
PPCES 2024: MPI Lab
Marc-André Hermanns, hermanns@itc.rwth-aachen.de

Acknoledgements: Parts of these code example have been developed by: - Christian Iwainsky - Sandra
Wienke - Hristo Iliev - Joachim Jenke

Synopsis
The purpose of this hands-on lab is to make you familiar with the basic concepts of MPI. Tasks 1–3 will
introduce you to the principles of basic point-to-point communication. Task 4 will practice the concept
and usage of collective communications and MPI in general.

Building and executing lab examples
Building

The lab examples are written in C and require a C99 compiler. To ensure the C99 support, the CFLAGS
in common/make.def specify the flag -std=c99, which switches on the C99 language support for most
compilers. You may need to adapt this to the compiler used on your system.

MPI uses compiler wrappers to take care of all MPI-related command-line arguments for the preprocessor,
compiler, and linker. The names for these wrappers is not standardized, yet mpicc is a common name for
the C compiler wrapper. Therefore, this is the default compiler for the lab examples.

On most systems, you should be able to build an example with just

% make

Yet, you can override the compiler wrapper used by specifying it directly with the make command. The
following example chooses the Intel Compiler with the Intel MPI library.

% make MPICC=mpiicc

Executing

MPI does not specify a specific launch command to be used to launch an MPI application, however,
many MPI libraries provide the command mpiexec. If you are on a local system (like your laptop), this
command will likely allow you to start the MPI application. On HPC platforms however, execution of
parallel application may be performed by a different launch command, and an existing mpiexec in the
path may not work as desired. Always consult your local HPC platform documentation for the details on
launching MPI applications.

The CLAIX system at RWTH Aachen University defines environment variables for the convenience of the
user. For the sake of these lab exercises, the following command on the cluster frontends will launch your
MPI application on a shared partition.

% ${MPIEXEC} -n <numberOfProcesses> \
<application> <application_args>

Note: The \ followed by a line break allows to spread a single command across multiple lines. It is used
here for the sole purpose of clarity, and is not needed if all your command line arguments are on a single
line.

All exercises contain a special make target that will launch you program with an appropriate number of
MPI processes.

% make run

They also contain a special make target that will submit the program as a batch job.

% make batch

1

mailto:hermanns@itc.rwth-aachen.de


1. Hello, MPI!
Lecture Sessions: MPI Overview, MPI Concepts The purpose of this exercise is to get you
familiar with the very basics of MPI programming. Start with the minimal program hello.(c|f90) in
directory 1_helloMPI and insert the appropriate code at the TODO markers.

2. Ping Pong
Lecture Sessions: Blocking Point-to-Point Communication One basic MPI program using
point-to-point communication is the “ping pong” between two MPI processes. A ping-pong program
skeleton can be found in directory 2_pingPong. Complete the source code parts marked with “TODO”.

a) Make the first process of the MPI program transmit its input to the second process. The second
process should then print the received value and send it back with an opposite sign to the first process,
which should again print the received value.

b) Make each rank send an individually and randomly selected number of elements. Let the other process
know in advance the size of the array by explicitly sending it as an additional message.

c) What is the behaviour of the program for NPROCS=1 and NPROCS>2? Modify it to display an error
message when started with too few processes and to execute properly with more than two processes.

d) Implement part b) of the assignment without explicitly sending the number of elements.

e) Bonus task: Implement a loop to send/receive messages with different sizes. How does the message
size influence the time being spent in MPI functions? You may use MPI_Wtime() to measure wall-clock
time and go with array size as high as 226 elements to make the impact of the data size clearly visible.

3. Send-Receive
Lecture Sessions: Blocking/Non-blocking Point-to-Point Communication When multiple
MPI processes exchange messages concurrently using blocking communication, the application may
run into a deadlock if the communication pattern is not properly implemented. Use the code example
3_sendReceive/send_receive.(c|f90) and identify why this application runs into a deadlock. Use
different techniques to overcome this problem.

(Note: You can abort the program execution when running interactively using Ctrl-c.)

a) Modify the original code to use MPI_Send() and MPI_Recv() such that it becomes a correct MPI
program and completes execution.

b) Modify the original code to use MPI_Sendrecv() or MPI_Sendrecv_replace to avoid the deadlock.

c) Modify the original code to use non-blocking communication on one of the point-to-point communication
calls to avoid the deadlock.

d) Modify the original code to use non-blocking communication on both of the point-to-point communi-
cation calls to avoid the deadlock.

e) Modify the code from d) to work with more than 2 MPI processes. In this case the messages should
be exchanged between adjacent ranks. (Hint: Will a special treatment be needed for the last rank?)

4. Derived Datatypes
Messages can be exchanged with different datatype handles on sender and receiver side, if the respective
type signature of the buffers at sender and receiver-side matches.

a) Extend the skeleton file 6_datatypes/derived.c and create datatypes on the sender and receiver
side to transpose a 10 x 10 matrix in flight, by reading the data column-wise (use MPI_Type_vector) on
the sender side and receiving row-wise (use MPI_Type_contiguous) on the receiver side. (*Hint: It is
easiest to send separate messages for each column of data)

b) Extend your solution for (a) and create a full matrix type to be able to send the data with a single
message. Use a MPI_Type_create_hindexed (which is similar to MPI_Type_indexed, but uses byte
displacements) to combine several columns of data into a single message. Think about why you cannot

2



use MPI_Type_indexed for this easily. ## 5. Simple Collectives ##### Lecture Sessions: Blocking
Collective Communication

MPI collective operations describe common communication patterns among multiple processes. Implement
the collectives bcast_int, scatter_int, gather_int, alltoall_int, and reduce_sum_int present in
the skeleton file 4_simpleCollectives/collectives.c. Note that these collectives are simplified to
work on integer buffers.

The skeleton file already contains printf statements to help you verify the correctness of your imple-
mentation. You can provide the rank in MPI_COMM_WORLD of the process that should perform the print
statements. To test your implementation execute the application with different arguments.

Here is an example for testing with four ranks:

% make run NPROCS=4 # rank 0 is default
% make run NPROCS=4 PROG_ARGS=1 # select rank 1 to output
% make run NPROCS=4 PROG_ARGS=2 # select rank 2 to output
% make run NPROCS=4 PROG_ARGS=3 # select rank 3 to output

6. Creating new communicators
Lecture Sessions: Derived Datatypes Create new communicators as described in the subtask

a) Create a duplicate of MPI_COMM_WORLD using MPI_Comm_dup and query the processes’ rank and size
for this communicator in dupRank and dupSize, respectively.

b) Split MPI_COMM_WORLD such that the resulting communicators hold the MPI processes with odd and
even ranks in MPI_COMM_WORLD, respectively. Query the processes’ rank and size for this communicator in
oddevenRank and oddevenSize, respectively.

c) Split MPI_COMM_WORLD such that the resulting communicators hold the MPI processes with the ranks in
MPI_COMM_WORLD below have of the size of MPI_COMM_WORLD and equal and above, respectively. Reorder
the ranks such that the lowest rank in MPI_COMM_WORLD has the highest rank in the resulting communicator.
Query the processes’ rank and size for this communicator in upperlowerRank and upperlowerSize,
respectively.

3


	PPCES 2024: MPI Lab
	Synopsis
	Building and executing lab examples
	Building
	Executing

	1. Hello, MPI!
	2. Ping Pong
	3. Send-Receive
	4. Derived Datatypes
	6. Creating new communicators


