Performance Metrics & Measurements

HPC Intro 2024

Felix Tomski
RWTH

Performance Metrics

5 RWTH
IT Center

Runtime

®* HPC is about reducing the runtime of an application & enabling the simulation of large data sets
. Serial performance tuning
. Parallel performance tuning
®* Time metrics
. Wallclock time: elapsed real time (such as a clock on the wall)
. CPU time: accumulated time of
all CPUs (cores) executing the

application (instructions) 3,500
. Derived > core-h: program run 3,000 Lower is better
of 1 hour on 4 cores = 4 core-h —_ 2’500 |
% 2,000
®* Remarks o 1,500
. Complete application time g 1,000
- Kernel time = 500
® Getting the runtime = 0
« Timers in code, or tools O 4 8 1216202428 32 3640 44 48

#processes

3 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Floating-Point Operations per Second

Floating-point operations per second: Flop/s
Double precision (64-bit, e.g. double)
Single precision (32-bit, e.g. float)
Half precision (16-bit)

Remarks
Typical for algorithm

Avoid ,Macho-Flop/s" 600,000
Consider costs, e.g. energy consumption &
efficiency 500’000 1
Getting Flop/s 0 400,000 -
Runtime measurement g—SO0,000 1
Theoretical calculation (algorithm) L 200’000 |
Tools
Typical application: Linpack (Top500) 100’008

Higher is better

0O 4 8 12

6 20 24 28 32 36 40 44 48
processes

Performance Metrics & Measurements | Felix Tomski

RWTH

IT Center

Bandwidth

®* Bandwidth (throughput) in GB/s
. Main memory bandwidth (node granularity)
. Cache bandwidth (socket / core granularity)
. Network bandwidth (cluster granularity)

i Remarks

. Many HPC applications are bound

by memory bandwidth - 140
. Consider NUMA effects on node 5 120 - [
= 100 1
* Getting GB/s 2= 80
« Runtime measurement _g [t 60
. Theoretical calculation of Bytes - 9. 4218 | | |
. Tools 2 0 ____ Higher is better_
Q
* Typical application: STREAM S O 4 8 12 16 20 24 28 32 36 40 44 48

#processes

5 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Speedup

« Ratio between runtime ¢ of some reference version ref and the (relevant) application version app

* tis wallclock time

tre f

Lapp is S times faster than ref*: Speedup S =
app

 Remarks
» Kernel speedup
» Application speedup

 Comparison examples
« GPU vs. CPU version: S =ceu

tcru

: _ P
 Parallel vs. serial version; S = —serial.
tpamllel

6 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Strong Scaling

» In parallel computing: Indicator for relative performance improvement
e Assumption
» Variation of number of processes N

+ Keep data set fixed Speedup S(N) =

» |deal situation: All work is perfectly parallelizable —> Linear speedup
* In general: Upper bound for parallel execution of programs

1)
tH(N)

Timeline
LW W, [Wy | W,
Wi
W,
W3
Wy

PNwWEA S
O0O-ANO00

Higher is better

0 4 8 12162024283236404448

speedup

#processes

7 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Strong Scaling

* Real-world limitations of scalability: serial parts in code
 Serial portion s, parallel portion p
* Refer to “Amdahl‘s Law” 1

Speedup S(N) =

>

S +

Z[=

Timeline

B v, [v, | w, | w, IEEH

40
%1 32 -
S 42 1
W3 o] 16 i
W, > 81
 Remarks 7]
« In reality, no task is perfectly parallelizable 0 4 812162024283236404448

#processes

8 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Weak Scaling

« Why do we have big clusters if scalability is limited by Amdahl’'s Law?
» Use bigger problem sizes!

e Assumption
» Variation of number of processes N

» Data set size changes with number of processes (e.g., doubling)

Strong scaling (p*t(1)=const) Weak scaling (t(N)=const)
n=1 < | Wy | Timeline n=1 < | Wy
W 4%
n=2 1 - 1
W, n=2 W,
A Wy
W2 WZ
n=4 W3 n=4 W3
W, Wy

9 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Weak Scaling

 Gustafson’s Law

PNowWA S
O0OOHRNOC0

Speedup S(N) =Np + s

speedup

0 4 8 12162024283236404448

» Perfect weak scaling: roughly constant #processes
runtime among varying #processes

- - = ow o=

runtime [s]

0 4 812162024283236404448

#processes

10 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Performance Measurements

11 R\WNTH

Scalability Myth: Code scalability is the key issue

[I
8- . _
= 3D Stencil Update A il
7 ("Jacobi")]
Changing only the compile &l _
options makes this code A\ T == Version 1 1
scalable on an 8-core chip =P ®—® Version 2 |
5]
24— =
v | 4
3 & = | o
Nin 03 -XAVX N
Parallel program is X times = 1]
faster than serial program. - | | | | | | | |]
1 2 3 4 5 6 7 8

#cores
Courtesy of Erlangen Regional
Computing Center (RRZE)

IT Center

Scalability Myth: Code scalability is the key issue

1500 T T

E— Versi 1
*—e Versi 2

3D Stencil Update
("Jacobi")

Single corelsocket efficiency
is key issue!

500

Performance [MLUP/s

Absolute performance

0

1 2 3 4 5 6 7 8
#cores
First goal should be optimizing serial code before conduction Courtesy of Erlangen Regional
parallel code tuning Computing Center (RRZE)

IT Center

Tuning Cycle

1. Find out where most of the runtime is spent

. Usually starts with a hotspot analysis

2. Find out why most of the runtime is spent there (analyze data) [Collect Data]

. Determine which factors stall performance (e.g. by hardware counters)

3. Optimize your code to get a decreased runtime Test Program] [Analyzing]

4. Test the correctness of code & its performance

« Use appropriate problem size [Optimizing]

. Start with step (1) if test not successful or fix correctness

14 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Preamble: Performance Engineering

» Performance engineering depends on different levels

Cluster Accelerator

« Some architectural levels may be shared resources (even in batch mode)
» Example: Processes from different users may run on the same node
» Possible impact: shared cache and memory channel utilization
« If necessary: request node exclusively

« Efficient usage of hardware resources important #SBATCH --exclusive
» If you use exclusive nodes, try to leverage the available

parallelism (e.g., multiple cores)

» Otherwise: idling hardware, and money not well invested

* Metrics, e .g., productivity %, efficiency e(N) :S(TN)

=

15 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Preamble: Performance Engineering

Performance measurements and analysis heavily relies on a good test setup

« Data set
» Find representative data set
 algorithmic & performance similarity to real data set
* Not too small: performance behavior changes with the size of the memory consumption
* Not too large: tests need to be done quite often to compare tuning steps
» Guarantee correct simulation results
» (automatic) correctness checks

 Interpreting performance data
« “Stable” testing environment for repeatable performance results
» thread binding & process pinning
» exclusively-reserved nodes
* Repeat runs to eliminate outlier behavior
» Use appropriate statistical data analysis of performance results
* mean, standard deviation, significance

16 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Preamble: Hotspots

* A Hotspot is a source code region where a significant part of the runtime is spent.

90/10 law

90% of the runtime in a program is spent in 10% of the code.

« Hotspots can indicate where to start with serial optimization or shared memory parallelization.

« Use atool to identify hotspots. In many cases the results are surprising.

17 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Collection of Performance Data

®* Performance analysis tools are highly recommended

to easily identify hotspots & collect performance data [Collect Data]
. Alternative: manual timing of code parts (limited)

[Test Program] [Analyzing]

®* Recording techniques

®* Profiling [Optimizing]
. Retrieves summary information

S _ Tracing
. Applies “instrumentation” or

“sampling” for triggering Precision exact information accumulated
®* Tracing information
. Time-ordered list of all the events Overhead higher overhead lower runtime overhead

_ (depends on #events)
that were recorded during program

Space easily hundreds of MB or smaller amount of
requirements GB for larger applications space needed
(depends on #events)

flow (event trace)

normally some MB

18 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Collection of Performance Data: Function Profiling

‘f_ cumulative self self total
; g time seconds seconds calls ms/call ms/call name
function f1 5 86.65 0.62 0.62 1 e15.21 e15.21 f1
S 9.94 0.69 0.07 70.60 685 81 f2
/4.26 0.72 0,03 30 2 fa
7T o.00 0.72 0’00 0. og\ 615. g\ f3
% of overall progres #seconds used by this Average
runtime used exclu-sively function (exc /USIV)(/E) #ca//s of this number of ms
by this function function per call that

®* Profiling tools, e.g.
. gprof (uses instrumenation + sampling)
. Intel VTune Amplfier XE

were spent in
this function

gprof @ RWTH (inclusive)
Compile with -pg:

$ gcc —pg test.c -0 a.out Average number of ms
Execute (will collect data in per call that were spent
gmon.out) in this function

$./a.out (exclusive)

Generate report

$ gprof a.out gmon.out >
profile-data.txt

View report

$ cat profile-data.txt .

Intel VTune @ RWTH

$ module load VTune

$ vtune-gui

or use command line version

19 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Performance Analysis

®* Based on hardware performance counters
. Special registers as part of hardware architecture [Collect Data]

. Count hardware-related information

« Examples [Test Program] [Analyzing]
Memory/ cache accesses

Floating-point operations
Cycles per instructions (CPI) [Optimizing J
i Evaluations, e.g.

. Concurrency
. Load Imbalance
. Metrics: https://hpc-wiki.info/hpc/ProPE_PE_Process

i Performance analysis tools, e.g.,

. Intel VTune Amplifier XE (medium-level)

« LIKWID (low-level) LIKWID @ RWTH

* ARM Performance Reports (high-level) $ module load GCC/11.3.0
. Intel Performance Snapshot (high-level) $ module load likwid

$ likwid-perfctr <...>

20 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

Performance Analysis: Getting an High-level Overview

lopt/intel/impi/2017.4.239/compilers_and_libraries

Compute

flinux/mpi/bin64/mpirun -np 4 IMB-MPI1

arm
PERFORMANCE

4 processes
REPORTS

24 seconds

cluster-hpc.rz.RWTH-Aachen.DE
Tue Feb 5 2019 10:58:08 (UTC+01)

1 node (12 physical, 24 logical cores per node)

frwthfs/rz/SW/intel/impi/2017.4.239/
compilers_and_libraries 2017.5.239/linux/mpi/

intel6d/bin

Summary: IMB-MPI1 is MPI-bound in this configuration

Compute 28% |

0.0% ‘

MPI
/O

Time spent running application code. High values are usually good.
This is very low; focus on improving MPI or IO performance first

Time spent in MPI calls. High values are usually bad.
This is very high; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/0. High values are usually bad.
This is negligible; there’s no need to investigate I/O performance

This application run was MPI-bound. A breakdown of this time and advice for investigating further is in the MPI| section

below.

Performance Metrics & Measurements | Felix Tomski

RWTHAACHEN
UNIVERSITY

n IT Center

Performance Analysis: Getting an High-level Overview

CPU MPI

A breakdown of the 2.8% CPU time: A breakdown of the 97.2% MPI time:

Scalar numericops 31.6% [l Time in collective calls 90.0% N

Vector numeric ops 0.0% | Time in point-to-point calls 10.0% 1

Memory accesses 68.4% [N Effective process collective rate 1996e/s R

The per-core performance is memory-bound. Use a profiler to Effective process point-to-pointrate 3.59 GB/s I ARM Performance Reports @ RWTH

identify time-consuming loops and check their cache

S i lective cails wi i
performance. Most of the time is spent in collective calls with a high transfer

rate. It may be possible to improve this further by overlapping
No time is spent in vectorized instructions. Check the compiler's communication and computation or reducing the amount of

vectorization advice to see why key loops could not be vectorized. communication required. LI m Ited n u m ber Of Ilcenses

/O Threads : c . .
A breakdown of the 0.0% I/O time: A breakdown of how multiple threads were used: ExeCUte your appl |Cat|0n Wlth perf- report
Time in reads 0.0% Computation 0.0% $ mOdU|e |Oad ARM Forge/22.0.4

Effective process read rate 0.00 bytes/s Physical core utilization 32.7% I

S— ooy = $ firefox 4p_1n_1t_2019-02-05_10-58.html

No time is spentin /O operations. There's nothing to optimize No measurable time is spent in multithreaded code.
here!

I
Time in writes 0.0% : Synchronization 0.0% | $ perf_report mplrun _np 4 a.out
|

Effective process write rate 0.00 bytes/s

Physical core utilization is low. Try increasing the number of
processes to improve performance.

Memory Energy

Per-process memory usage may also affect scaling: A breakdown of how energy was used:

Mean process memory usage 59.1 Mie [CPU not supported % | * ARMForge renamed tO

Peak process memory usage 77.6 MiB [N System ted % | LlnaI’O FOFge from version 23 on

Peak node memory usage 18.0% N Mean node power tsupported W | ° perf-l’epOI’t Command remalns
Peak node power 000w |

The peak node memery usage is very low. Running with fewer MPI

processes and more data on each process may be more efficient. 5 2 2
Energy metrics are not available on this system.

CPU metrics are not supported (ne intel_rapl medule)

Performance Metrics & Measurements | Felix Tomski 7 RWNTH

IT Center

Performance Analysis: Getting an High-level Overview

Application: matrix_multiply_naive.icc

Report creation date: 2017-10-16 15:21:48

OpenMP threads: 88

HW Platform: Intel(R) Xeon(R) Processor code named Broadwell-EP
Logical Core Count per node: 88

Collector type: Event-based counting driver

21.02s 12.94

Elapsed Time SP FLOPS

CPl
Serial Time OpenMP Imbalance
0.33s 2.64s
1.57% of Elapsed Time 12.54%N of Elapsed Time

Memory Footprint
Resident total: 403.64 MB
Virtual total: 6520.70 MB

i & 3 X
Your application is memory bound.

Use memory access analysis tools like Intel® VTune™ Amplifier for a detailed metric breakdown
by memory hierarchy, memory bandwidth, and correlation by memory objects.

Currentrun Target

Serial Time 157% <15%

Delta

Intel Performance

Op P Imbalance 12.54%Kk <10% =
Memory stalls 83.00%K <20% Snapshot @ RWTH
FPU Utilization 0.20%K >50%
= Works only with Intel MPI
” | $ module load VTune
Memory Stalls FPU Utilization i :
83.00%R of pipeline slots 0.20%K Gettlng StartEd .
Cache Stalls SP FLOPs per Cycle httpS /Isoftware. I.ntel ’ com/e n-
23.70%K of cycles 0.06 Out of 32.00 us/get-started-with-application-
DRAM Stalls Vector Capacity Usage performance-snapshot
64.80%K of cycles 25.00%K
Average DRAM Bandwidth FP Instruction Mix
59.43 GB/s % of Packed FP Instr.: 0.10%

45.10%K of remote accesses

FP_Arith/Mem Wr. Instr. Ratio

ﬂ IT Center

Summary

® HPC goal: reduce application runtime
. Serial and parallel performance optimization

[Collect Data]

* Performance metrics [Test Program] [Analyzing]
. Absolute metrics: runtime, Flop/s, GB/s

. Relative metrics: speedup
. strong scaling (Amdabhl): same data, increased resources

. weak scaling (Gustafson), increased data, increased resources Performance Engineering'
Tuning Cycle

[Optimizing J

e Performance measurements
. Use requested HPC resources efficiently
. Start with simple performance measurements
like hotspot analyses and then focus on these hotspots
. Performance analysis tools help to collect and
analyze performance data

24 Performance Metrics & Measurements | Felix Tomski RWNTH

IT Center

