
Performance Metrics & Measurements

HPC Intro 2024
Felix Tomski



Performance Metrics

2



Performance Metrics & Measurements | Felix Tomski

Runtime
• HPC is about reducing the runtime of an application & enabling the simulation of large data sets

• Serial performance tuning
• Parallel performance tuning• Time metrics
• Wallclock time: elapsed real time (such as a clock on the wall)
• CPU time: accumulated time of

all CPUs (cores) executing the
application (instructions)

• Derived 🡪 core-h: program run
of 1 hour on 4 cores = 4 core-h• Remarks

• Complete application time
• Kernel time• Getting the runtime
• Timers in code, or tools

3
#processes

0 4 8 12 16 20 24 28 32 36 40 44 48run
tim

e[s
]

05001,0001,5002,0002,5003,0003,500 Lower is better



Performance Metrics & Measurements | Felix Tomski

Floating-Point Operations per Second
• Floating-point operations per second: Flop/s

• Double precision (64-bit, e.g. double)
• Single precision (32-bit, e.g. float)
• Half precision (16-bit)• Remarks
• Typical for algorithm
• Avoid „Macho-Flop/s“
• Consider costs, e.g. energy consumption &

efficiency• Getting Flop/s
• Runtime measurement
• Theoretical calculation (algorithm)
• Tools• Typical application: Linpack (Top500)

4
#processes0 4 8 12 16 20 24 28 32 36 40 44 48

Flo
p/s

0
100,000
200,000
300,000
400,000
500,000
600,000

Higher is better



Performance Metrics & Measurements | Felix Tomski

Bandwidth
• Bandwidth (throughput) in GB/s

• Main memory bandwidth (node granularity)
• Cache bandwidth (socket / core granularity)
• Network bandwidth (cluster granularity)

• Remarks
• Many HPC applications are bound

by memory bandwidth
• Consider NUMA effects on node

• Getting GB/s
• Runtime measurement
• Theoretical calculation of Bytes
• Tools

• Typical application: STREAM

5
#processes

0 4 8 12 16 20 24 28 32 36 40 44 48me
mo

ryb
and

wid
th

[GB
/s]

020406080100120140

Higher is better



Performance Metrics & Measurements | Felix Tomski

Speedup
• Ratio between runtime 𝑡 of some reference version 𝑟𝑒𝑓 and the (relevant) application version 𝑎𝑝𝑝

• t is wallclock time
• „𝑎𝑝𝑝 is 𝑆 times faster than 𝑟𝑒𝑓“:

• Remarks• Kernel speedup• Application speedup
• Comparison examples• GPU vs. CPU version: 𝑆 = 𝑡𝐶𝑃𝑈

𝑡𝐺𝑃𝑈• Parallel vs. serial version: 𝑆 = 𝑡𝑠𝑒𝑟𝑖𝑎𝑙
𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

6

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺 = 𝒕𝒓𝒆𝒇
𝒕𝒂𝒑𝒑



Performance Metrics & Measurements | Felix Tomski

Strong Scaling
• In parallel computing: Indicator for relative performance improvement• Assumption• Variation of number of processes 𝑁• Keep data set fixed
• Ideal situation: All work is perfectly parallelizable —> Linear speedup• In general: Upper bound for parallel execution of programs

7

𝑊1

Timeline
𝑊2 𝑊3 𝑊4

𝑊1
𝑊2
𝑊3
𝑊4

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺(𝑵) = 𝒕(𝟏)
𝒕(𝑵)

#processes
0 4 8 12 16 20 24 28 32 36 40 44 48spe

edu
p

08
1624324048

Higher is betterlinear spee
dup S(N)=N



Performance Metrics & Measurements | Felix Tomski

Strong Scaling
• Real-world limitations of scalability: serial parts in code• Serial portion 𝑠, parallel portion 𝑝• Refer to “Amdahl‘s Law”

• Remarks• In reality, no task is perfectly parallelizable

8

Timeline
𝑊1 𝑊2 𝑊3 𝑊4serial serial

serial
𝑊1
𝑊2
𝑊3
𝑊4

serial

#processes
0 4 8 12 16 20 24 28 32 36 40 44 48spe

edu
p

08
1624324048

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺(𝑵) = 𝟏
𝒔 + 𝒑𝑵

linear spee
dup

Amdahl’s Law
𝑆
𝑁→∞ 1

𝑠



Performance Metrics & Measurements | Felix Tomski

Weak Scaling
• Why do we have big clusters if scalability is limited by Amdahl’s Law?• Use bigger problem sizes!• Assumption• Variation of number of processes 𝑁• Data set size changes with number of processes (e.g., doubling)

9

𝑊1Timeline

𝑊3
𝑊4

𝑊1
𝑊2

𝑊1
𝑊2

𝑊1

𝑊3
𝑊4

𝑊1
𝑊2

𝑊1
𝑊2

Strong scaling (p*t(1)=const) Weak scaling (t(N)=const)
n=1
n=2

n=4

n=1
n=2

n=4



Performance Metrics & Measurements | Felix Tomski

Weak Scaling
• Gustafson’s Law

• Perfect weak scaling: roughly constantruntime among varying #processes

10
#processes

0 4 8 12162024283236404448run
tim

e[s
]

05001,0001,5002,0002,5003,0003,500
#processes

0 4 8 12 16 20 24 28 32 36 40 44 48spe
edu

p

08
1624324048

linear spe
edupGustafson’s Law𝑺𝒑𝒆𝒆𝒅𝒖𝒑 𝑺 𝑵 =𝑵𝒑 + 𝒔



Performance Measurements

11



Performance Metrics & Measurements | Felix Tomski

Changing only the compileoptions makes this codescalable on an 8-core chip

–O3 -xAVX

–O0

Courtesy of Erlangen RegionalComputing Center (RRZE)

Parallel program is X timesfaster than serial program.

Scalability Myth: Code scalability is the key issue



Performance Metrics & Measurements | Felix Tomski

Single core/socket efficiencyis key issue!

Courtesy of Erlangen RegionalComputing Center (RRZE)

Absolute performance

First goal should be optimizing serial code before conductionparallel code tuning

Scalability Myth: Code scalability is the key issue



Performance Metrics & Measurements | Felix Tomski

Tuning Cycle
1. Find out where most of the runtime is spent

• Usually starts with a hotspot analysis2. Find out why most of the runtime is spent there (analyze data)
• Determine which factors stall performance (e.g. by hardware counters)3. Optimize your code to get a decreased runtime4. Test the correctness of code & its performance
• Use appropriate problem size
• Start with step (1) if test not successful or fix correctness

14

Collect Data
Analyzing

Optimizing
Test Program



Performance Metrics & Measurements | Felix Tomski

Preamble: Performance Engineering
• Performance engineering depends on different levels

• Some architectural levels may be shared resources (even in batch mode)• Example: Processes from different users may run on the same node• Possible impact: shared cache and memory channel utilization• If necessary: request node exclusively• Efficient usage of hardware resources important #SBATCH --exclusive• If you use exclusive nodes, try to leverage the availableparallelism (e.g., multiple cores)• Otherwise: idling hardware, and money not well invested• Metrics, e .g., productivity 𝑎𝑝𝑝.𝑟𝑢𝑛𝑠
𝑐𝑜𝑠𝑡 (𝑇𝐶𝑂), efficiency 𝜀(𝑁) = 𝑆(𝑁)

𝑁

15

Cluster Node Core Accelerator

#processeseffi
cien

c
y 0.0

1.0



Performance Metrics & Measurements | Felix Tomski

Preamble: Performance Engineering
Performance measurements and analysis heavily relies on a good test setup
• Data set• Find representative data set• algorithmic & performance similarity to real data set• Not too small: performance behavior changes with the size of the memory consumption• Not too large: tests need to be done quite often to compare tuning steps• Guarantee correct simulation results• (automatic) correctness checks
• Interpreting performance data• “Stable” testing environment for repeatable performance results• thread binding & process pinning• exclusively-reserved nodes• Repeat runs to eliminate outlier behavior• Use appropriate statistical data analysis of performance results• mean, standard deviation, significance

16



Performance Metrics & Measurements | Felix Tomski

Preamble: Hotspots
• A Hotspot is a source code region where a significant part of the runtime is spent.

• Hotspots can indicate where to start with serial optimization or shared memory parallelization.
• Use a tool to identify hotspots. In many cases the results are surprising.

17

90/10 law
90% of the runtime in a program is spent in 10% of the code.



Performance Metrics & Measurements | Felix Tomski

Collection of Performance Data
• Performance analysis tools are highly recommended

to easily identify hotspots & collect performance data
• Alternative: manual timing of code parts (limited)

• Recording techniques• Profiling
• Retrieves summary information

of a program’s runtime behavior
• Applies “instrumentation” or

“sampling” for triggering• Tracing
• Time-ordered list of all the events

that were recorded during program
flow (event trace)

18

Collect Data
Analyzing

Optimizing
Test Program

Tracing Profiling
Precision exact information accumulatedinformation
Overhead higher overhead(depends on #events) lower runtime overhead
Spacerequirements easily hundreds of MB orGB for larger applications(depends on #events)

smaller amount ofspace needed
normally some MB



Performance Metrics & Measurements | Felix Tomski

Collection of Performance Data: Function Profiling

• Profile information per function
• Exclusive (not counting any callees of the function) orinclusive (including callees of function) runtimes• Flat profile or callgraph profile

• Profiling tools, e.g.
• gprof (uses instrumenation + sampling)
• Intel VTune Amplfier XE

19

% cumulative self self total
time seconds seconds calls ms/call ms/call name
86.65 0.62 0.62 1 615.21 615.21 f1
9.94 0.69 0.07 1 70.60 685.81 f2
4.26 0.72 0.03 1 30.26 30.26 f4
0.00 0.72 0.00 1 0.00 615.21 f3% of overall programruntime used exclu-sivelyby this function

#seconds used by thisfunction (exclusive)

Average number of msper call that were spentin this function(exclusive)

#calls of thisfunction
Averagenumber of msper call thatwere spent inthis function(inclusive)

gpr
of

exa
mp

le
gprof @ RWTHCompile with -pg:$ gcc –pg test.c –o a.outExecute (will collect data ingmon.out)$ ./a.outGenerate report$ gprof a.out gmon.out >profile-data.txtView report$ cat profile-data.txt

Intel VTune @ RWTH$ module load VTune$ vtune-guior use command line version

Hotspot isfunction f1



Performance Metrics & Measurements | Felix Tomski

Performance Analysis
• Based on hardware performance counters

• Special registers as part of hardware architecture
• Count hardware-related information
• Examples

• Memory/ cache accesses
• Floating-point operations
• Cycles per instructions (CPI)• Evaluations, e.g.

• Concurrency
• Load Imbalance
• Metrics: https://hpc-wiki.info/hpc/ProPE_PE_Process• Performance analysis tools, e.g.,
• Intel VTune Amplifier XE (medium-level)
• LIKWID (low-level)
• ARM Performance Reports (high-level)
• Intel Performance Snapshot (high-level)

20

LIKWID @ RWTH$ module load GCC/11.3.0$ module load likwid$ likwid-perfctr <...>

Collect Data
Analyzing

Optimizing
Test Program



Performance Metrics & Measurements | Felix Tomski

Performance Analysis: Getting an High-level Overview



Performance Metrics & Measurements | Felix Tomski

Performance Analysis: Getting an High-level Overview
ARM Performance Reports @ RWTH
Limited number of licenses
Execute your application with perf-report:$ module load ARMForge/22.0.4$ perf-report mpirun -np 4 a.out$ firefox 4p_1n_1t_2019-02-05_10-58.html

• ARMForge renamed toLinaroForge from version 23 on• perf-report command remains



Performance Metrics & Measurements | Felix Tomski

Performance Analysis: Getting an High-level Overview

23

Intel PerformanceSnapshot @ RWTH
Works only with Intel MPI
$ module load VTuneGetting started:https://software.intel.com/en-us/get-started-with-application-performance-snapshot



Performance Metrics & Measurements | Felix Tomski

Summary
• HPC goal: reduce application runtime

• Serial and parallel performance optimization

• Performance metrics
• Absolute metrics: runtime, Flop/s, GB/s
• Relative metrics: speedup

• strong scaling (Amdahl): same data, increased resources
• weak scaling (Gustafson), increased data, increased resources

• Performance measurements
• Use requested HPC resources efficiently
• Start with simple performance measurements

like hotspot analyses and then focus on these hotspots
• Performance analysis tools help to collect and

analyze performance data

24

Collect Data
Analyzing

Optimizing
Test Program

Performance Engineering:Tuning Cycle


