
MUST

MPI Runtime Error Detection Tool

Version 1.8.0-rc1

May 17, 2022

1

Contents Contents

Contents

1 Introduction 3

2 Installation 3
2.1 Prerequisites to build and use MUST . 4
2.2 Configuring with CMake . 4
2.3 Building MUST . 5
2.4 Install Prebuilt Configurations . 6
2.5 Environmentals . 6

3 Usage 6
3.1 Execution . 6
3.2 Execution of threaded applications . 7
3.3 Results . 8

3.3.1 Filtering Messages . 8

4 Example 9
4.1 Execution with MUST . 10
4.2 Output File . 10

5 MUST’s Operation Modes 13
5.1 Mode Overview . 13
5.2 Mode Details . 15

6 Included Checks 16

7 Stack trace information in MUST reports 16
7.1 Recommended: MUST Installation with Backward-cpp 16
7.2 Optional: MUST Installation with Dyninst 17

8 TypeART Integration 17
8.1 MUST Preparation . 17
8.2 Application Preparation . 18
8.3 Execution . 18

9 Troubleshooting 18
9.1 Issues with Ld-Preload . 18
9.2 Issues with stackwalkerAPI . 19

10 Copyright and Contact 20

2

2 INSTALLATION

1 Introduction

MUST detects usage errors of the Message Passing Interface (MPI) and reports them
to the user. As MPI calls are complex and usage errors common, this functionality is
extremely helpful for application developers that want to develop correct MPI appli-
cations. This includes errors that already manifest as segmentation faults or incorrect
results, as well as many errors that are not visible to the application developer or do not
manifest on a particular system or MPI implementation.

To detect errors, MUST intercepts the MPI calls issued by the target application
and evaluates their arguments. The two main usage scenarios for MUST arise during
application development and during porting. When a developer adds new MPI com-
munication calls, MUST can detect newly introduced errors, especially also some that
may not manifest in an application crash. Further, before porting an application to
a new system, MUST can detect violations to the MPI standard that might manifest
on the target system. MUST reports errors in a log file that can be investigated once
the execution of the target executable finishes (irrespective of whether the application
crashed or not).

2 Installation

The MUST software consists of three individual packages:

• PnMPI

• GTI

• MUST

The PnMPI package provides base infrastructure for the MUST software and intercepts
MPI calls of the target application. GTI provides tool infrastructure, while the MUST
package contains the actual correctness checks.

Starting with version 1.6, all three packages are contained in a single archive and
configured and built at once.

Each MUST installation is built with a specific compiler and MPI library. It should
only be used for applications built with the same compiler and MPI library. This is
necessary as the behavior of MUST may differ depending on the MPI library. Compilers
may be mixed if they are binary compatible.

Building MUST requires CMake for configuration. It is freely available at http:

//www.cmake.org/. You can execute which cmake to determine whether a CMake
installation is available. If not, contact your system administrator or install a local
version, which requires no root privileges. We suggest to use CMake version 3.9 or later
(use cmake --version) for most functionality. Individual optional features may require
even never CMake versions, which is specified in Section 2.1. From CMake version 3.20
on, full functionality is supported.

3

http://www.cmake.org/
http://www.cmake.org/

2.1 Prerequisites to build and use MUST 2 INSTALLATION

Further, to augment the MUST output with call stack information, which is very
helpful for pinpointing errors, it is possible to utilize Backward or Dyninst. In that case,
MUST uses either Backtrace-cpp or the Stackwalker API from Dyninst to read and print
stack traces for errors. Section 7 presents the necessary steps for such an installation.
Additionally, type-matching and data race analyses can be enabled by the integration
of TypeART (see Section 8) and ThreadSanitizer (see Section 3.2), respectively.

MUST supports parallel build. Therefore you may want to append –j<number of
cores> to the make calls.

2.1 Prerequisites to build and use MUST

• cmake (required 3.9 or newer, optional 3.20 or newer for TypeART, see cmake
--version)

• python (required 3, see python -V)

• libxml2 with headers (libxml2-dev / libxml2-devel, required)

• graphviz (optional, to generate graphs)

• dyninst (optional, see Section 7.2)

• a browser (optional, to view html output)

• LLVM lit (optional 12 or newer to run tests, see tests/README.md)

• LLVM FileCheck (optional to run tests, see tests/README.md)

• LLVM-based compiler (optional 10 or newer for TypeART, see Section 8)

• MPI library, used by the application (required)

2.2 Configuring with CMake

All parts of MUST use CMake for configuration. CMake works best with ’out of source’
builds, this is what we recommend in the installation steps below. Common CMake
options include -DCMAKE_INSTALL_PREFIX to set the path to install into if you do not
have root or to provide MUST as module environment package. CMake options can be
configured with a GUI on many systems by using ccmake instead of cmake with all the
-D flags listed below.

• When the ccmake gui appears:

• press c to generate options, press e to move on from any messages displayed by
cmake.

• edit any options displayed,

4

2.3 Building MUST 2 INSTALLATION

• press c to see if there are any new options resulting from the previous round of
choices

• repeat until you are happy with the options

• press g to generate the build

• move on to the make step as usual.

2.3 Building MUST

MUST can be built as follows (assuming GNU compilers):

tar xzf MUST-v1.8.0-rc1.tar.gz

cd MUST-v1.8.0-rc1

mkdir BUILD

cd BUILD

CC=$(which gcc) CXX=$(which gcc++) FC=$(which gfortran) \

cmake ../ \

-DCMAKE_INSTALL_PREFIX=<MUST-INSTALLATION-DIR> \

-DCMAKE_BUILD_TYPE=Release

make -j8 install

export PATH=<MUST-INSTALLATION-DIR>/bin:$PATH

In many cases, it is essential, to use the plain compilers for CC &Co, i.e., not the MPI
compiler wrappers. The CMake call will determine your MPI installation in order to con-
figure MUST correctly. If this should fail – or multiple MPIs are available – you can tip
the configuration by specifying –DMPI C COMPLIER=<FILE–PATH–TO–MPICC>
as well as –DMPI CXX COMPLIER=<FILE–PATH–TO–MPICXX> and
–DMPI Fortran COMPLIER=<FILE–PATH–TO–MPIF90> as additional arguments
to the cmake command. More advanced users can fine-tune the detection by speci-
fying additional variables, consult the comments in cmakemodules/FindMPI.cmake. On
clusters with special MPI environments, it helps to verify that MPIEXEC is set to the
right mpiexec command (like srun).

Usually, no extra arguments are needed to configure MUST. You can specify -
DENABLE TESTS=On to activate the test suite that is included in MUST. Tests
should only be started after installing MUST and can be run with from within the
build directory with:

make check

or

lit tests

Some tests will fail even for a correct installation since they document future extensions.
You can get a detailed test report for a single test with:

5

2.4 Install Prebuilt Configurations 3 USAGE

lit tests/<path/to/test/testname>

To run all BasicChecks with up to 4 tests in parallel:

lit -j4 tests/BasicChecks

More information on the test suite can be found in
<MUST–SOURCE–DIR>/tests/README.md.

2.4 Install Prebuilt Configurations

To speed up the tool preparation time, we provide some prebuilt configurations for
typical tool usage. These can be installed during building of MUST:

make -j8 install install-prebuilds

We strongly suggest this step for cluster installations. If prebuilts are not available,
MUST will prepare an appropriate configuration during the execution of mustrun.

2.5 Environmentals

To work with MUST, it is sufficient to add <MUST–INSTALLATION–DIR>/bin to
your PATH variable.

3 Usage

The following two steps allow you to use MUST:

• Replace the mpiexec command with mustrun to execute your application;

• Inspect the result file of the run.

3.1 Execution

The actual execution of an application with MUST is done by replacing the mpiexec
command with mustrun. It performs a code generation step to adapt the MUST tool to
your application and will run your application with MUST afterward.

The plain mustrun command that we use here is intended for small scale short-running
applications and can exhibit very high runtime overhead. Section 5 presents further
configurations of MUST that we tested with up to 16, 384 processes. The plain mustrun
command uses all of MUST’s correctness checks and a communication system where one
MPI process is used to drive some of these checks. So when submitting a batch job, you
should make sure to allocate resources for one additional task. Further, when calling
mustrun you need to have access to the compilers and MPI utilities that were used to
build MUST itself.

A regular mpiexec command like:

mpiexec -np 4 application.exe

6

3.2 Execution of threaded applications 3 USAGE

Is replaced with:

mustrun -np 4 application.exe

It will execute your application with four tasks but requires one additional task, i.e. it
will actually invoke mpiexec with -np 5.

For an example where the mpiexec command and the switch used to specify the number
of processes is named differently:

srun -n 4 application.exe

You could use the followingmustrun command:

mustrun --must:mpiexec srun --must:np -n -n 4 application.exe

If your machine provides no compilers in batch jobs, you can prepare a run as follows:

mustrun --must:mode prepare -np 4 application.exe

In your batch job you would then just execute:

mustrun --must:mode run -np 4 application.exe

The mustrun tool provides further switches to modify its behavior, call
mustrun --must:help for a summary. If you encounter errors during execution, please
submit error reports where you use --must:verbose as an argument to mustrun.

3.2 Execution of threaded applications

For support of threaded applications, MUST provides a thread-safe mode:

mustrun --must:hybrid -np 4 application.exe

Be aware that MUST lifts the required MPI threading level in this case to
MPI THREAD MULTIPLE, while MUST limits the provided threading level without this
flag to MPI THREAD SINGLE.

MUST additionally features checks to detect data races in hybrid programs with the
help of ThreadSanitizer1, which can be enabled by

mustrun --must:tsan -np 4 application.exe

This requires MUST to be configured with -DENABLE_TSAN=On (enabled by de-
fault) and the application under test to be compiled with -fsanitize=thread (sup-
ported by GNU- and LLVM-based compilers). Currently, ThreadSanitizer integra-
tion for data race detection was tested with the clang compiler from version 6
up to 13 and gcc version 9 to 12. The application also has to be linked with
<MUST–INSTALLATION–DIR>/lib/libonReportLoader.a and built with debug info for
MUST to generate meaningful reports for detected data races. Some linkers may not
add unused symbols of the library to the application, in which case it helps to tell the
linker to include all symbols from the library

1https://clang.llvm.org/docs/ThreadSanitizer.html

7

https://clang.llvm.org/docs/ThreadSanitizer.html

3.3 Results 3 USAGE

$CC app.c -g \

-Wl,--whole-archive install/must/lib/libonReportLoader.a \

-Wl,--no-whole-archive \

--fsanitize=thread

If MUST is configured with -DENABLE_STACKTRACE=On (enabled by default, see Sec-
tion 7), information from the stacktraces will be used for reports on data races. To check
whether MUST is configured properly with ThreadSanitizer support, run

lit tests/MpiTSan

or

make check-MpiTSan

For the tests however MUST has to be built with either gcc or clang in one of the
aforementioned versions.

3.3 Results

MUST stores its results in an HTML file named MUST Output.html. It contains infor-
mation on all detected issues, including information on where the error occurred. By
default the MUST Output.html file is placed in the execution directory. The output
directory can be specified via --must:output-dir <path>.

Moreover, MUST’s output can be split across multiple files by the user. To
this end, the application under test may call GTI ChangeMessageFile(filename),
which will result in MUST writing output to filename. This requires including the
GTI Annotations.h header and adding <MUST–INSTALLATION–DIR>/include to
the include path for compilation. Note that the filename can be altered multiple times
during execution. The filename is interpreted relative to MUST’s main output directory.

3.3.1 Filtering Messages

MUST also allows its output to be filtered according to user-defined rules. Fil-
ter rules have the following general format: messageType:MUST ERROR TYPE:source,
where MUST ERROR TYPE determines which type of errors or warnings to filter out (e.g.,
MUST ERROR TYPEMATCH MISMATCH) and source is one of the following:

• specific file as source: src:filename.c

• specific function as source: func:function name

• every source: *

For exmaple, the rule messageType:MUST WARNING COMM NULL:src:main.c would fil-
ter out all of MUST warning regarding MPI COMM NULL or NULL as a communicator handle
resulting from the source file main.c. The first two type of rules require MUST to use
stacktraces, which can be enabled with the --must:stacktrace option (see Section 7).

8

4 EXAMPLE

Multiple filter rules may be specified in a file line by line and given to MUST
via --must:filter-file <file>. Alternatively, the environment variable MUST FILTER FILE

can be set to the file. For a list of more supported MUST ERROR TYPES see
<MUST–SOURCE–DIR>/modules/Common/MustEnums.h.

4 Example

As an example consider the following application that contains three MPI usage errors:

1 #include <s t d i o . h>
2 #include <mpi . h>
3

4 int main (int argc , char∗∗ argv)
5 {
6 int rank ,
7 size ,
8 sBuf [2] = {1 ,2} ,
9 rBuf [2] ;

10 MPI Status status ;
11 MPI Datatype newType ;
12

13 MPI Init(&argc ,&argv) ;
14 MPI Comm rank (MPICOMMWORLD, &rank) ;
15 MPI Comm size (MPICOMMWORLD, &s ize) ;
16

17 //Enough ta sk s ?
18 i f (s ize < 2)
19 {
20 printf (”This t e s t needs at l e a s t 2 p r o c e s s e s !\n”) ;
21 MPI Finalize () ;
22 return 1 ;
23 }
24

25 //Say h e l l o
26 printf (”Hel lo , I am rank %d o f %d pro c e s s e s .\n” , rank , s ize) ;
27

28 // 1) Create a datatype
29 MPI Type contiguous (2 , MPI INT, &newType) ;
30 MPI Type commit (&newType) ;
31

32 // 2) Use MPI Sendrecv to perform a r ing communication
33 MPI Sendrecv (
34 sBuf , 1 , newType, (rank+1)%size , 123 ,
35 rBuf , s izeof (int) ∗2 , MPIBYTE, (rank−1+s ize) % size , 123 ,
36 MPICOMMWORLD, &status) ;
37

38 // 3) Use MPI Send and MPI Recv to perform a r ing communication
39 MPI Send (sBuf , 1 , newType, (rank+1)%size , 456 , MPICOMMWORLD) ;
40 MPI Recv (rBuf , s izeof (int) ∗2 , MPIBYTE, (rank−1+s ize) % size , 456 ,

MPICOMMWORLD, &status) ;
41

42 //Say bye bye
43 printf (” S ign ing o f f , rank %d .\n” , rank) ;
44

45 MPI Finalize () ;
46

47 return 0 ;
48 }
49 /∗EOF∗/

9

4.1 Execution with MUST 4 EXAMPLE

4.1 Execution with MUST

A user could set up the environment for MUST, build the application, and run it with
the following commands:

#Set up environment

export PATH=<MUST-INSTALLATION-DIR>/bin:$PATH

#Compile and link, we rely on the ld-preload mechanism

mpicc example.c -o example.exe -g

#Run with four processes. We will need resources for five tasks!

mustrun -np 4 example.exe

4.2 Output File

The output of the run with MUST will be stored in a file named MUST Output.html.
For this application MUST will detect three different errors that are:

• A type mismatch (Figure 1)

• A send-send deadlock (Figure 3)

• A leaked datatype (Figure 5)

Figure 1 shows the first error that MUST detects. The error results from the usage of
non-matching datatypes, which are an MPI INT and an MPI BYTE of the same size as the
integer value. This is not allowed according to the MPI standard. A correct application
would use MPI INT for both the send and receive call.

If MUST is configured with Dyninst (Section 7.2), the right column will list call
stacks for all the involved MPI calls, as in Figure 5. Here the error is detected in the
MPI Sendrecv call in line 33.

The example shows the specification of the location in the datatype that causes the
mismatch. The location (CONTIGUOUS)[0](MPI INT) means that the used datatype is
of contiguous kind. The mismatch is within the first element of the contiguous type,
which is defined to be a base type, namely MPI INT.

As another example (VECTOR)[1][2](MPI CHAR) would address the third entry of the
second block of a vector with base-type MPI CHAR.

Figure 2 displays a graphical representation of the type mismatch. The image shows
type trees of the involved data types. For a correct type match, both trees should share
all their leaves. For a clearer view, matching leaves are hidden. The path to the first clash
is highlighted in red. For derived types, the node labels display the count/blocklength
value, used in the declaration of the type, while the edge label (corresponding to the
path expression) gives the index of the block/blockitem, that leads to the first clash.

For communication buffers that access the same memory address concurrently (”buffer
overlap”), similar descriptions and graphs are used. In this case, all nodes that point

10

4.2 Output File 4 EXAMPLE

Figure 1: Type mismatch error report from MUST.

Figure 2: Detail page for the type mismatch in Figure 5.

to distinct memory addresses are hidden, as the focus lies on the representation of the
memory overlap.

The second error results from the application calling send calls that can lead to
deadlock (Figure 3). Each task issues one call to MPI Send while no matching receive is
available. This can cause deadlock. However, as such calls would be buffered for most
MPI implementations, this is a deadlock that only manifests for some message sizes or
MPI implementations.

If MUST detects a deadlock, it provides visualization for its core, i.e., the set of MPI
calls of which at least one call has to be modified or replaced. It stores a wait-for graph
representation of this core in a file named MUST Deadlock.dot. If available, MUST
automatically translates this file into an image and provides a deadlock view (Figure 4),
which shows the task dependencies and a parallel call stack. This graph file uses the DOT
language of the Graphviz package. If a graphviz installation was available when MUST
was installed, it automatically visualizes the graph. Otherwise, you can visualize it by
issuing dot -Tps MUST Deadlock.dot -o deadlock.ps after installing this tool. You can
open the file deadlock.ps with the postscript viewer of your choice (DOT also supports
additional output formats). If MUST was configured with Dyninst (Section 7.2), it
will also print a parallel call stack in a file called MUST DeadlockCallStack.dot, which
Figure 4 shows at the bottom. This stack includes any MPI call that was referred to in
the wait-for graph. Especially if processes use non-blocking communications, this call

11

4.2 Output File 4 EXAMPLE

Figure 3: Send-send deadlock report from MUST, basic report.

Figure 4: Deadlock view for the send-send deadlock.

12

5 MUST’S OPERATION MODES

Figure 5: Resource leak report from MUST.

stack may include multiple MPI calls for each process.
Further graphs in the deadlock view show information about the message matching

state to highlight any call that might have been intended to match a blocked point-to-
point call. Since no outstanding point-to-point message exists in the deadlock situation
of Figure 3, these graphs are empty.

Finally, MUST detects that the application leaks MPI resources when calling
MPI Finalize. In particular, this is a datatype created with an MPI contiguous call.
Applications should free all such resources before invoking MPI Finalize, as harmful
leaks are easier to detect in such cases.

5 MUST’s Operation Modes

MUST’s analysis of all MPI calls causes runtime overhead. As a result, it is important
to adapt its configuration such that its overhead stays acceptable. While its default
configuration (mustrun without additional switches) is easy to use, more advanced con-
figurations may be required. MUST’s overhead primarily results from:

• Correctness checks that require information from multiple processes, and

• A communication mode that allows MUST to detect MPI usage errors even if the
application crashes.

MUST can use more than one additional process to run expensive correctness checks,
while a shared memory based communication mode allows MUST to tolerate application
crashes with limited runtime overhead.

5.1 Mode Overview

MUST provides the following operation modes that adapt its overhead to the target
use-case:

1. (Default) Very slow, Centralized, application may crash:

• Command line: mustrun -np X exe

• One extra process for correctness checking

• All checks enabled

• Detects errors even if application crashes

13

5.1 Mode Overview 5 MUST’S OPERATION MODES

• Very slow, for short running tests at < 32 processes

2. Fast, centralized, application does not crash:

• Command line: mustrun -np X --must:nocrash exe

• One extra process for correctness checking

• All checks enabled

• Detects errors only if the application does not crash

• Limited scalability, use for < 100 processes

3. Fast, centralized, application may crash:

• Command line: mustrun -np X --must:nodesize Y exe

• Number of extra processes: 1 + d X
Y−1e

• All checks enabled

• Detects errors even if application crashs

• Limited scalability, use for < 100 processes

• Requires shared memory communication (Available on most linux based clus-
ters)

4. Distributed, application does not crash:

• Command line: mustrun -np X --must:distributed [--must:fanin Z] exe

• Network of extra processes:

– Layer 0: A = dXZ e
– Layer 1: B = dAZ e
– . . .

– Layer k: 1

• If you need to reduce overheads, you can disable MUST’s distributed deadlock
detection with --must:nodl

• Detects errors only if the application does not crash

• Tested with 16, 384 processes

5. Distributed, application may crash:

• Command line:
mustrun -np X --must:distributed --must:nodesize Y [--must:fanin Z] exe

• Network of extra processes:

– Layer 0: A = d X
Y−1e

– Layer 1: B = dAZ e
– Layer 2: C = dBZ e

14

5.2 Mode Details 5 MUST’S OPERATION MODES

– . . .

– Layer k: 1

• If you need to reduce overheads, you can disable MUST’s distributed deadlock
detection with --must:nodl

• Tested with 4, 096 processes

• Requires shared memory communication (Available on most linux based clus-
ters)

5.2 Mode Details

For any non-demanding (short and small scale) use case, we suggest operation Mode 1
(mustrun -np X exe), since it is always available and easy to use.

For more extensive application runs at moderate scale (< 100 processes) users should
either use Mode 2 (mustrun -np X --must:nocrash exe) or Mode 3 (mustrun -np X
--must:nodesize Y exe). While Mode 2 assumes that the application does not crash,
Mode 3 uses a shared memory communication (Linux message queues) to tolerate appli-
cation crashes. Besides the limited availability of this communication mechanism (most
Linux-based systems), it requires more than one extra process to operate. The user needs
to specify a node size Y that is a divisor of the number of cores available within each
compute node. MUST then uses one tool process per Y − 1 application processes. It is
important that the resource manager distributes MPI ranks in node-core order. That is,
it fills each node completely and with successive ranks. The use of the --must:fillnodes
switch to the mustrun command may help if the total number of MPI ranks does not
fill all allocated nodes causing the resource manager to not fill nodes completely.

By adding the --must:info switch to any mustrun command, the user may retrieve
additional information on the number of application tasks, tool tasks, and required
nodes without running or preparing a MUST run. This provides valuable information
to prepare batch job allocations.

Modes 4 (mustrun -np X --must:distributed [--must:fanin Z] exe) and 5 (mustrun
-np X --must:distributed --must:nodesize Y [--must:fanin Z] exe) are intended for ap-
plication runs at scale (> 100 processes, where we tested MUST with up to 16,384
processes). Both modes use a tree network to run several correctness checks, which
increase their demand for extra computing cores. Again Mode 4 assumes that the appli-
cation does not crash, while Mode 5 uses a shared memory communication to tolerate
application crashs. Mode 5 comes with the same restrictions and allocation assump-
tions as Mode 3. For both modes, the user may specify the --must:fanin Z switch which
controls the ratio of application to extra tool processes. The default value is 16, higher
values may increase MUST’s overhead, while lower values may reduce its overhead. Ex-
perience with MUST’s distributed deadlock detection shows that it scales to an order of
16,384 processes but can double MUST’s overhead. If MUST’s overhead is too high for
your use-case, you can add the switch --must:nodl to disable the distributed deadlock
detection for Modes 4 and 5.

15

7 STACK TRACE INFORMATION IN MUST REPORTS

6 Included Checks

MUST currently provides correctness checks for the following classes of errors:

• Constants and integer values

• Communicator usage

• Datatype usage

• Group usage

• Operation usage

• Request usage

• Leak checks (MPI resources not freed before calling MPI Finalize)

• Type mis-matches

• Overlapping buffers passed to MPI

• Deadlocks resulting from MPI calls

• Data races involving MPI calls

7 Stack trace information in MUST reports

MUST relies on external libraries to generate source code information included in
MUST reports. The --must:stacktrace switch allows selecting the stack trace mecha-
nism when launching mustrun. Since collecting stack traces can be costly and introduce
significant runtime overhead, MUST will not collect stack traces by default. There-
fore, the default of this setting is none. To enable stack traces based on backward-
cpp, use --must:stacktrace backward. To enable stack traces based on Dyninst, use
--must:stacktrace dyninst. The individual options will only be available if MUST was
built with support for the individual stack trace library as described in the following. A
single installation of MUST can be built with support for both stack trace libraries at
the same time.

7.1 Recommended: MUST Installation with Backward-cpp

Since MUST version 1.8, MUST is configured with backward-cpp support enabled
by default. To install MUST without backward-cpp support, the CMake variable
-DUSE BACKWARD=Off must be explicitly set during the configuration of MUST.
Backward-cpp can work with different libraries to unwind the call stack2 and to read
the debug information from the binary3. The backward-cpp CMake configuration will
automatically detect and select available debugging libraries.

2https://github.com/bombela/backward-cpp/#libraries-to-unwind-the-stack
3https://github.com/bombela/backward-cpp/#libraries-to-read-the-debug-info

16

https://github.com/bombela/backward-cpp/#libraries-to-unwind-the-stack
https://github.com/bombela/backward-cpp/#libraries-to-read-the-debug-info

7.2 Optional: MUST Installation with Dyninst 8 TYPEART INTEGRATION

7.2 Optional: MUST Installation with Dyninst

In order to install MUST with Dyninst support, a full Dyninst installation or a separate
installation of the Dyninst Stackwalker API is needed. This usually requires an installa-
tion of libdwarf. Installation instructions for these can be found on the Dyninst website4.
We tested the integration of dyninst in versions 7.0.1 and 8.0.1 and stackwalkerAPI in
versions 2.1 and 8.0.1. For some systems, we identified issues for the older version of
dyninst, that are listed in Section 9.2. We suggest to install libdwarf as a shared library
(--enable-shared during its configure).

As Dyninst’s build support is currently limited to GNU compilers, you should build
your application and the tool with binary compatible compilers. To build dyninst with
compilers other than GNU, make sure to set the variables CC, CXX, GXX, LD and
LINKER for both the configure and the make step (this is not supported).

After a successful installation of the Stackwalker API it is necessary to configure
MUST to use this installation. Use the following CMake variables:

• -DUSE CALLPATH=On Enables the feature

• -DSTACKWALKER INSTALL PREFIX= Should point to the directory
used for Stackwalker API installation (i.e. prefix given to its configure)

• -DCALLPATH STACKWALKER EXTRA LIBRARIES= Addi-
tional libaries that are needed, if libdwarf was built statically, you will need to
add an absolute file path to this lib here

Afterwards run make and make install to build and install MUST. When running
MUST, no additional steps are needed. However, the stackwalker library will only be
able to extract source file names and line numbers if the application was built with the
debugging flag -g. Otherwise, it will list symbol addresses and library names instead.

Note that MUST expects that the shared libraries for libdwarf (if built as a shared
library) and libelf are in the LD LIBRARY PATH.

8 TypeART Integration

MUST’s native type mis-match detection focuses on distributed mis-matches, e.g., a send
and a matching receive call using two incompatible data types. In order to additionally
check for local type mis-matches, MUST provides optional integration of the type and
memory allocation tracker TypeART5.

8.1 MUST Preparation

By default, an existing and installed version of TypeART will be used for MUST.
However, if TypeART is not installed at this system, the TypeART sources will be

4https://www.dyninst.org/
5https://github.com/tudasc/TypeART

17

https://www.dyninst.org/
https://github.com/tudasc/TypeART

8.2 Application Preparation 9 TROUBLESHOOTING

included as submodule and built from source. TypeART support requires an LLVM-
based compiler in version 10 or newer and can be enabled during the configuration
with -DENABLE TYPEART=On. MUST will automatically detect and enable
TypeART support if applicable during the configuration.

8.2 Application Preparation

As TypeART relies on code instrumentation, its compiler wrapper needs to be used
for compilation. For detailed information on requirements on and preparation of the
application to test see <MUST–SOURCE–DIR>/externals/typeart/README.md. In
case TypeART was built from source as a submodule, the needed wrappers can be
found under <MUST–INSTALLATION–DIR>/bin, i.e, if you followed the suggetion in
Section 2.5 the wrappers will be available without any other manual tweaking.

8.3 Execution

If MUST was configured with TypeART support and the application was built accord-
ingly, MUST’s TypeART checks can be enabled via the option --must:typeart. To check
whether MUST is configured properly for TypeART checks, run

lit tests/TypeArt

or

make check-TypeArt

9 Troubleshooting

The following lists currently known problems or issues and potential workarounds.

9.1 Issues with Ld-Preload

In order to use MUST, your application must be linked against the core library of
PnMPI. Per default, MUST will add this library at execution time by using the ld-
preload mechanism. If this causes issues, you can use the following command to manually
link the PnMPI library:

mpicc source.c -L<PNMPI-INSTALLATION-DIR>/lib \

-lpnmpi -o application.exe

Important: if you manually link against the MPI library, you must add the PnMPI
library first and the MPI library afterwards.

18

9.2 Issues with stackwalkerAPI 9 TROUBLESHOOTING

9.2 Issues with stackwalkerAPI

boost related error while build of MUST with dyninst-8:

error: boost/bar_foo.hpp: File not found

Solution for boost installation outside of /usr:
Edit mustsrc/modules/Callpath/CMakeLists.txt insert around line 21:

include_directories(/<BOOST_INSTALL_PREFIX>/include)

SEGFAULT on execution of mustrun:

rank 0 (of 4), pid 12345 catched signal nr 11

without any of the WARNINGs listed below. This issue affects almost every installation.

Solution:
Edit src/dyninst/symtabAPI/src/Object-elf.C around line 2069 and replace:

if(secNumber >= 1 && secNumber <= regions_.size()) {

by

if(secNumber >= 0 && secNumber < regions_.size()) {

... and rebuild / install dyninst

SEGFAULT on execution of mustrun:

rank 0 (of 4), pid 12345 catched signal nr 11

without any of the WARNINGs listed below and after fixing the issue above.

Solution:
Make sure that you use the same compiler family for building dyninst, PnMPI, GTI,

MUST and your application!

mustrun reports missing library:

WARNING: Can’t load module libcallpathModule.so (Error libdwarf.so:

cannot open shared object file: No such file or directory)

Solution:
Add <LIBDWARF–INSTALLATION–DIR>/lib to LD LIBRARY PATH (libd-

warf.so should be located there).

19

10 COPYRIGHT AND CONTACT

10 Copyright and Contact

MUST is distributed under a BSD style license. For details, see the file LICENSE.txt in
its package. MUST uses parts of external code, mostly distributed under BSD style
license. In any case the license is indicated in the source file, and in the external
directories, a LICENSE file can be found. Finally, PnMPI is distributed under LGPL
license. The license file is located in externals/GTI/externals/PnMPI/LICENSE.

Contact must-feedback@lists.rwth-aachen.de for bug reports, feedback, and feature
requests.

20

	Introduction
	Installation
	Prerequisites to build and use MUST
	Configuring with CMake
	Building MUST
	Install Prebuilt Configurations
	Environmentals

	Usage
	Execution
	Execution of threaded applications
	Results
	Filtering Messages

	Example
	Execution with MUST
	Output File

	MUST's Operation Modes
	Mode Overview
	Mode Details

	Included Checks
	Stack trace information in MUST reports
	Recommended: MUST Installation with Backward-cpp
	Optional: MUST Installation with Dyninst

	TypeART Integration
	MUST Preparation
	Application Preparation
	Execution

	Troubleshooting
	Issues with Ld-Preload
	Issues with stackwalkerAPI

	Copyright and Contact

