MUST

MPI Runtime Error Detection Tool

“MUST

September 12, 2015



Contents Contents
Contents
(1__Introductionl 3
[2__Installation 3
[2.1  Prerequisites to build and use MUST|. . . . . ... ... ... ... .... 4
2.2 Configuring with CMake|. . . . . . . . ... ... oo oo 4
E37P™PI. . . o oo 5
RA_GTT . . .o, 5
RS _DMUSTI . . . oo e e e e e 6
2.6  Environmentals| . . . . ... ..o 6
3 Usage 6
8.1 Executionl . . . . . . . . e 7
B2 Resulfa. . . . . o o oo 7
4 Example 8
41 FExecution with MUST] . . . . . . . . . ... 8
4.2 Output File| . . . . . . . . oo 9
b MUST's Operation Modes| 12
B.I Mode Overviewl . . . . . . . . . . e 12
B2 ModeDetaild . . . . . . . .. 14
6 Included Checks| 14
ptional: nstallation wit yninst 15
[8 Troubleshooting] 16
8.1 _Issues with L.d-Preload|. . . . .. ... ... ... ... ... .. ...... 16
8.2 Issues with stackwalkerAPIl . . . . . ... ... ... ... ... ... ... 16
[0 Copyright and Contact| 17




2 INSTALLATION

1 Introduction

MUST detects usage errors of the Message Passing Interface (MPI) and reports them
to the user. As MPI calls are complex and usage errors common, this functionality is
extremely helpful for application developers that want to develop correct MPI appli-
cations. This includes errors that already manifest as segmentation faults or incorrect
results, as well as many errors that are not visible to the application developer or do not
manifest on a certain system or MPI implementation.

To detect errors, MUST intercepts the MPI calls that are issued by the target appli-
cation and evaluates their arguments. The two main usage scenarios for MUST arise
during application development and during porting. When a developer adds new MPI
communication calls, MUST can detect newly introduced errors, especially also some
that may not manifest in an application crash. Further, before porting an application
to a new system, MUST can detect violations to the MPI standard that might manifest
on the target system. MUST reports errors in a log file that can be investigated once
the execution of the target executable finishes (irrespective of whether the application
crashed or not).

2 Installation

The MUST software consists of three individual packages:
e P™MPI
o GTI
e MUST

The P"MPI package provides base infrastructure for the MUST software and intercepts
MPI calls of the target application. GTI provides tool infrastructure, while the MUST
package contains the actual correctness checks.

Each MUST installation is built with a certain compiler and MPI library. It should
only be used for applications that are built with the same pair of compiler and MPI
library. This is necessary as the behavior of MUST may differ depending on the MPI
library. Compilers may be mixed if they are binary compatible.

All three packages require CMake for configuration, it is freely available at http:
//www.cmake.org/l. You can execute which cmake to determine whether a CMake
installation is available. If not, contact your system administrator or install a local
version, which requires no root privileges. We suggest to use CMake version 2.8 or later
(use cmake --version).

Further, in order to augment the MUST output with call stack information, which is
very helpful for pinpointing errors, it is possible to utilize Dyninst. In that case MUST
uses the Stackwalker API from Dyninst to read and print stacktraces for errors. As the
installation of Dyninst is often non-trivial we suggest this for more experienced users or
administrators only. Section [7] presents the necessary steps for such an installation.


http://www.cmake.org/
http://www.cmake.org/

2.1 Prerequisites to build and use MUST 2 INSTALLATION

In general all three packages support parallel build, therefore you may want to append
—j<number of cores> to the make calls.

2.1 Prerequisites to build and use MUST

e cmake (required 2.8 or newer, see cmake --version)
e python (required 2.6 or newer, see python -V)
e libxml2 with headers (libxml2-dev / libxml2-devel, required)

e graphviz (optional, to generate graphs)

dyninst (optional, see section [7)

a browser (optional, to view html output)

e MPI library, used by the application (required)

2.2 Configuring with CMake

All parts of MUST use CMake for configuration. CMake works best with ’out of source’
builds, this is what we recommend in the installation steps below. Common CMake
options include -DCMAKE_INSTALL_PREFIX to set the path to install to, if you do not
have root or to create module environment packages. CMake options can be configured
with a GUI on many systems by using ccmake instead of cmake with all the -D flags
listed below.

e When the ccmake gui appears:

e press ¢ to generate options, press e to move on from any messages displayed by
cmake.

e edit any options displayed,

e press ¢ to see if there are any new options resulting from the previous round of
choices

e repeat until you are happy with the options
e press g to generate the build

e move on to the make step as usual.



2.3 P"MPI 2 INSTALLATION

2.3 P*MPI
P®MPI can be build as follows:

gunzip pnmpi.tar.gz

tar -xf pnmpi.tar

cd pnmpi

mkdir BUILD

cd BUILD

CC=<C-COMPILER> CXX=<C++-COMPILER> FC=<F90-COMPILER> \

cmake ../ \
-DCMAKE_INSTALL_PREFIX=<PNMPI-INSTALLATION-DIR> \
-DCMAKE_BUILD_TYPE=Release

make install

export PATH=<PNMPI-INSTALLATION-DIR>/bin:$PATH

In many cases it’s essential, to use the plain compilers for CC&Co, i.e., not the MPI
compiler wrappers. The CMake call will determine your MPI installation in order to con-
figure P"MPI correctly. If this should fail — or multiple MPIs are available — you can tip
the configuration by specifying ~-DMPI_C_.COMPLIER=<FILE-PATH-TO-MPICC>
as well as -DMPI.CXX_COMPLIER=<FILE-PATH-TO-MPICXX>  and
—~DMPI_Fortran_.COMPLIER=<FILE-PATH-TO-MPIF90> as additional arguments
to the cmake command. More advanced users can fine tune the detection by speci-
fying additional variables, consult the comments in cmakemodules/FindMPI.cmake.

2.4 GTI
GTI can be build as follows:

gunzip gti.tar.gz

tar -xf gti.tar

cd gti

mkdir BUILD

cd BUILD

CC=<C-COMPILER> CXX=<C++-COMPILER> FC=<F90-COMPILER> \

cmake ../ \
-DCMAKE_INSTALL_PREFIX=<GTI-INSTALLATION-DIR> \
-DCMAKE_BUILD_TYPE=Release

make install

export PATH=<GTI-INSTALLATION-DIR>/bin:$PATH

If you specified extra arguments for the MPI detection when installing P"MPI, you
must also add these arguments for the CMake call of the GTT configuration. CMake
will detect a P*MPI installation automatically if P®MPI’s binary directory is included
in the PATH environment variable, otherwise provide the P"MPI installation directory
to CMake with ~-DPnMPI_INSTALL_PREFIX=<PNMPI-INSTALLATION-DIR>.



2.5 MUST 3 USAGE

2.5 MUST
MUST is built as follows:

gunzip must.tar.gz

tar -xf must.tar

cd must

mkdir BUILD

cd BUILD

CC=<C-COMPILER> CXX=<C++-COMPILER> FC=<F90-COMPILER> \

cmake ../ \
-DCMAKE_INSTALL_PREFIX=<MUST-INSTALLATION-DIR> \
-DCMAKE_BUILD_TYPE=Release

make install

The installation of MUST relies almost completely on the settings specified when in-
stalling GTI. CMake will detect the previous GTT installation if GTT’s binary directory
is included in the PATH environment variable, otherwise provide the GTI installation
directory to CMake with -DGTI_.INSTALL_PREFIX=<GTI-INSTALLATION-DIR>.
Usually no extra arguments are needed to configure MUST. You can specify -
DENABLE_TESTS=0n to activate the test suite that is included in MUST. Tests should
only be started after installing MUST and can be run with:

ctest

Some tests will fail even for a correct installation since they document future extensions.
You can get a detailed test report with:

ctest -VV -R “<TEST-NAME>$
For the test named basic:

ctest -VV -R “basic$

2.6 Environmentals

To work with MUST, it is sufficient to add <MUST-INSTALLATION-DIR> /bin to
your PATH variable. Binary paths of PPMPI and GTI are just needed at installation
time.

3 Usage
The following two steps allow you to use MUST:
e Replace the mpierec command with mustrun to execute your application;

e Inspect the result file of the run.



3.1 Execution 3 USAGE

3.1 Execution

The actual execution of an application with MUST is done by replacing the mpiexec
command with mustrun. It performs a code generation step to adapt the MUST tool to
your application and will run your application with MUST afterwards.

The plain mustrun command that we use here is intended for small scale short running
applications and can exhibit very high runtime overhead. Section [5| presents further
configurations of MUST that we tested with up to 16, 384 processes. The plain mustrun
command uses all of MUST’s correctness checks and a communication system where one
MPI process is used to drive some of these checks. So when submitting a batch job, you
should make sure to allocate resources for one additional task. Further, when calling
mustrun you need to have access to the compilers and MPI utilities that where used to
build MUST itself.

A regular mpiexec command like:

mpiexec -np 4 application.exe
Is replaced with:
mustrun -np 4 application.exe

It will execute your application with 4 tasks, but requires one additional task, i.e. it will
actually invoke mpiexec with -np 5.

For an example where the mpiexec command and the switch used to specify the number
of process is named differently:

srun -n 4 application.exe

You could use the followingmustrun command:

mustrun --must:mpiexec srun --must:np -n -n 4 application.exe

If your machine provides no compilers in batch jobs, you can prepare a run as follows:
mustrun --must:mode prepare -np 4 application.exe

In your batch job you would then just execute:

mustrun --must:mode run -np 4 application.exe

The mustrun tool provides further switches to modify its behavior, call
mustrun --must:help for a summary. If you encounter errors during execution, please
submit error reports where you use --must:verbose as an argument to mustrun.

3.2 Results

MUST stores its results in an HTML file named MUST_Qutput.html. It contains infor-
mation on all detected issues including information on where the error occurred.



4 EXAMPLE

4 Example

As an example consider the following application that contains three MPI usage errors:

123,

456,

1|#include <stdio.h>

2|#include <mpi.h>

3

4| int main (int argc, charsx argv)

5| {

6 int rank,

7 size ,

8 sBuf[2] = {1,2},

9 rBuf[2];

10 MPI_Status status;

11 MPI _Datatype newType;

12

13 MPI Init(&argc,&argv) ;

14 MPI_Comm rank (MPLOOMMWORID, &rank) ;

15 MPI_Comm size (MPLOOMMMWORID, &size) ;

16

17 //Enough tasks ?

18 if (size < 2)

19 {

20 printf (”This_test._needs_at_least._2_processes!\n”);

21 MPI_Finalize () ;

22 return 1;

23 }

24

25 //Say hello

26 printf (”Hello,_I_am_rank %d_of _%d._processes.\n”, rank, size);

27

28 //1) Create a datatype

29 MPI_Type_contiguous (2, MPLINT, &mewType) ;

30 MPI_Type_commit (&newType) ;

31

32 //2) Use MPI_Sendrecv to perform a ring communication

33 MPI_Sendrecv (

34 sBuf, 1, newType, (rank+1)%size, 123,

35 rBuf, sizeof(int)=*2, MPIBYTE, (rank—1l+4size) % size,

36 MPLCOMMWORID, &status) ;

37

38 //3) Use MPI_Send and MPI_Recv to perform a ring communication

39 MPI Send (sBuf, 1, newType, (rank+1)%size, 456, MPLOOMMWORID) ;

40 MPI Recv (rBuf, sizeof(int)x2, MPLBYTE, (rank—l+size) % size,
MPLCOMMWORID, &status) ;

41

42 //Say bye bye

43 printf (”Signing._off,_rank.%d.\n”, rank);

44

45 MPI_Finalize ();

46

47 return 0;

48| }

49| /*EOF%/

4.1 Execution with MUST

A user could set up the environment for MUST, build the application, and run it with

the following commands:




4.2  Output File 4 EXAMPLE

IRank| Message erences

reference 1 rank 0:
IMPI_Sendrecv called
[from:

0 main@example.c:33

A send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous) ;:;?r;;l;:fegnfai:e a

[0](MPI_INT) in the send type and at (MPI_BYTE) in the receive type (consult the MUST manual for a

detailed description of datatype positions). A graphical representation of this situation is availableina| MPIL Sendrecv fimom;

#0 main@example.c:33

detailed type mismatch view (MUST Output-files/MUST Typemismatch 0.html). The send operation called from:
0 [Erro 5 5 :
was started at reference 1, the receive operation was started at reference 2. (Information on #0 reference 3 rank 0:
communicator: MPI_COMM_WORLD) (Information on send of count 1 with type:Datatype created at [main@example.c:33 IMPL_Type_conti .nus
reference 3 is for C, commited at reference 4, based on the following type(s): { MPI_INT}Typemap = et Eont g

{(MPIL_INT, 0), (MPL_INT, 4)}) (Information on receive of count 8 with type:MPI_BYTE) 40 main@example.c:29

reference 4 rank 0:
IMPI_Type_commit called|

lfrom:
#0 main@example.c:30

Figure 1: Type mismatch error report from MUST.

M
The application issued a set of MPI calls that mismatch in type signatures! The graph below shows details on this situation. The first differing item of each involved

communication reﬁiest is hiihljihted.

MPI_Sendrecv:send

‘ MPI_Type_contiguous(count=2) ‘ ‘ MPI_Sendrecv:recv

MPI_INT | MPI_BYTE

Figure 2: Detail page for the type mismatch in Figure

#Set up environment
export PATH=<MUST-INSTALLATION-DIR>/bin:$PATH

#Compile and link, we rely on the ld-preload mechanism
mpicc example.c -o example.exe -g

#Run with 4 processes, will need resources for 5 tasks!
mustrun -np 4 example.exe

4.2 OQutput File

The output of the run with MUST will be stored in a file named MUST_Output.html.
For this application MUST will detect three different errors that are:

e A type mismatch (Figure
e A send-send deadlock (Figure[3])
e A leaked datatype (Figure )

Figure [1] shows the first error that MUST detects. The error results from the usage of
non-matching datatypes, which are an MPI_INT and an MPI_BYTE of the same size as the



4.2  Output File 4 EXAMPLE

integer value. This is not allowed according to the MPI standard. A correct application
would use MPI_INT for both the send and receive call.

If MUST is configured with Dyninst (Section, the right column will list call stacks for
all the involved MPI calls, as in Figure[bl Here the error is detected in the MPI_Sendrecv
call in line 33.

The example shows the specification of the location in the datatype that causes the
mismatch. The location (CONTIGUOUS) [0] (MPI_INT) means that the used datatype is of
contiguous kind, the mismatch is within the first element of the contiguous type which
is defined to be a base type namely MPT_INT.

As another example (VECTOR) [1] [2] (MPI_CHAR) would address the third entry of the
second block of a vector with basetype MPI_CHAR.

Figure [2| displays a graphical representation of the type mismatch. The image shows
type trees of the involved datatypes. For a correct type match, both trees should share all
their leaves. For a clearer view, matching leaves are hidden. The path to the first clash
is highlighted in red. For derived types, the node labels display the count/blocklength
value, used in the declaration of the type, while the edge label (corresponding to the
path expression) gives the index of the block/blockitem, that leads to the first clash.

For communication buffers, that access the same memory address concurrently
("buffer overlap”), similar description and graphs are used. In this case all nodes that
point to distinct memory addresses are hidden, as the focus lies on the representation of
the memory overlap.

The second error results from the application calling send calls that can lead to
deadlock (Figure [3)). Each task issues one call to MPI_Send while no matching receive is
available. This can cause deadlock, however, as such calls would be buffered for most
MPI implementations this is a deadlock that only manifests for some message sizes or
MPI implementations.

If MUST detects a deadlock it provides a visualization for its core, i.e. the set of MPI
calls of which at least one call has to be modified or replaced. It stores a wait-for graph
representation of this core in a file named MUST_Deadlock.dot. If available, MUST
automatically translates this file into an image and provides a deadlock view (Figure {4)),
which shows the task dependencies and a parallel call stack. This graph file uses the
DOT language of the Graphviz package. If a graphviz installation was available when
MUST was installed, it automatically visualizes the graph, otherwise you can visualize
it by issuing dot -Tps MUST_Deadlock.dot -0 deadlock.ps after installing this tool. You
can open the file deadlock.ps with the post script viewer of your choice (DOT also
supports additional output formats). If MUST was configured with Dyninst (Section ,
it will also print a parallel call stack in a file called MUST_DeadlockCallStack.dot, which
Figure ] shows at the bottom. This stack includes any MPI call that was referred to in
the wait-for graph. Especially if processes use non-blocking communications, this call
stack may include multiple MPI calls for each process.

Further graphs in the deadlock view show information about the message matching
state to highlight any call that might have been intended to match a blocked point-to-
point call. Since no outstanding point-to-point message exists in the deadlock situation
of Figure [3] these graphs are empty.

10



4.2  Output File 4 EXAMPLE

freference 1 rank 0:
IMPI_Send called from:
[#0 main@example.c:39

reference 2 rank 1:

The application issued a set of MPI calls that can cause a deadlock! A graphical representation of this IMPI_Send called from:
situation is available in a detailed deadlock view (MUST Output-files/MUST Deadlock.html). References] #0 main@example.c:39
[Error] 1-4 list the involved calls (limited to the first 5 calls, further calls may be involved). The application still
runs, if the deadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the reference 3 rank 2:
involved ranks with a debugger or abort the application (if necessary). IMPI_Send called from:
[#0 main@example.c:39
reference 4 rank 3:
IMPI_Send called from:
[#0 mai mple.c:39

Figure 3: Send-send deadlock report from MUST, basic report.

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows
active wait-for dependencies between the processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no
further processes. A legend details the wait-for graph components in addition , while a parallel call stack view summarizes the locations of the MPI calls that cause|
the deadlock . Below these graphs, a message queue graph shows active and unmatched point-to-point communications. This graph only includes operations that
could have been intended to match a point-to-point operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any
operation in the parallel call stack. The leafs of this call stack graph show the components of the message queue graph that they span. The application still runs, if

the deadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the involved ranks with a debugger or abort the application (if
).

MPI_Send@0

Active MPI Call

comm=A, tag=456

MPI_Send@1
-Send@ Sub Operation

comm=A, tag=456 comm=A, tag=456

MPI_Send@2 A waits for B and C

comm=A, tag=456

MPI_Send@3

A waits for B or C
main@examplec3e| | | A [T TTT77"
Ranks: 0-3 TEay -

)
MPI_Send

Figure 4: Deadlock view for the send-send deadlock.

11



5 MUST’S OPERATION MODES

reference 1 rank 0:
IMPI Type_contiguous

There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should called from:
free all MPI resources before calling MPI_Finalize. Listing information for these datatypes: 40 main@example.c:29
[Error]
-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following reference 2 rank 0:
type(s): { MPLINT}Typemap = {(MPLINT, 0), (MPL_INT, 4)} IMPIL Type_commit called

from:
[#0 main@example. c:30

Figure 5: Resource leak report from MUST.

Finally, MUST detects that the application leaks MPI resources when calling
MPI Finalize. In particular this is a datatype created with an MPI_contiguous call.
Applications should free all such resources before invoking MPI_Finalize, as harmful
leaks are easier to detect in such cases.

5 MUST’s Operation Modes

MUST’s analysis of all MPI calls causes runtime overhead. As a result, it is important
to adapt its configuration such that its overhead stays acceptable. While its default
configuration (mustrun without additional switches) is easy to use, more advanced con-
figurations may be required. MUST’s overhead primarily results from:

e Correctness checks that require information from multiple processes, and

e A communication mode that allows MUST to detect MPI usage errors even if the
application crashes.

MUST can use more than one additional process to run expensive correctness checks,
while a shared memory based communication mode allows MUST to tolerate application
crashs with limited runtime overhead.

5.1 Mode Overview

MUST provides the following operation modes that adapt its overhead to the target
use-case:
1. (Default) Very slow, Centralized, application may crash:

e Command line: mustrun -np X exe

e One extra process for correctness checking
e All checks enabled

e Detects errors even if application crashs

e Very slow, for short running tests at < 32 processes

2. Fast, centralized, application does not crash:

e Command line: mustrun -np X --must:nocrash exe

e One extra process for correctness checking

12



5.1 Mode Overview 5 MUST’S OPERATION MODES

e All checks enabled
e Detects errors only if the application does not crash
e Limited scalability, use for < 100 processes

3. Fast, centralized, application may crash:

e Command line: mustrun -np X --must:nodesize Y exe
e Number of extra processes: 1 + [ |

e All checks enabled

e Detects errors even if application crashs

e Limited scalability, use for < 100 processes

e Requires shared memory communication (Available on most linux based clus-
ters)

4. Distributed, application does not crash:

e Command line: mustrun -np X --must:distributed [--must:fanin Z] exe
e Network of extra processes:

— Layer 0: A= (%1

— Layer 1: B =[]

— Layer k: 1
e If you need to reduce overheads, you can disable MUST’s distributed deadlock
detection with --must:nodl
e Detects errors only if the application does not crash
e Tested with 16, 384 processes

5. Distributed, application may crash:
e Command line:
mustrun -np X --must:distributed --must:nodesize Y [--must:fanin Z] exe
e Network of extra processes:
— Layer 0: A = [2]
— Layer 1: B = [%}
— Layer 2: C =[]

— Layer k: 1
e If you need to reduce overheads, you can disable MUST’s distributed deadlock
detection with --must:nodl
e Tested with 4,096 processes

e Requires shared memory communication (Available on most linux based clus-
ters)

13



5.2  Mode Details 6 INCLUDED CHECKS

5.2 Mode Details

For any non-demanding (short and small scale) use-case we suggest operation Mode 1
(mustrun -np X exe), since it is always available and easy to use.

For more extensive application runs at moderate scale (< 100 processes) users should
either use Mode 2 (mustrun -np X --must:nocrash exe) or Mode 3 (mustrun -np X
--must:nodesize Y exe). While Mode 2 assumes that the application does not crash,
Mode 3 uses a shared memory communication (Linux message queues) to tolerate appli-
cation crashs. Besides the limited availability of this communication mechanism (most
linux based systems), it requires more than one extra process to operate. The user needs
to specify a nodesize Y that is a divisor of the number of cores available within each
compute node. MUST then uses one tool process per Y — 1 application processes. It is
important that the resource manager distributes MPI ranks in node-core order. That is,
it fills each node completely and with successive ranks. The use of the --must:fillnodes
switch to the mustrun command may help if the total number of MPI ranks does not
fill all allocated nodes causing the resource manager to not fill nodes completely.

By adding the --must:info switch to any mustrun command, the user may retrieve
additional information on the number of application tasks, tool tasks, and required
nodes without running or preparing a MUST run. This provides valuable information
to prepare batch job allocations.

Modes 4 (mustrun -np X --must:distributed [--must:fanin Z] exe) and 5 (mustrun
-np X --must:distributed --must:nodesize Y [--must:fanin Z] exe) are intended for ap-
plication runs at scale (> 100 processes, where we tested MUST with up to 16,384
processes). Both modes use a tree network to run several correctness checks, which
increase their demand for extra computing cores. Again Mode 4 assumes that the appli-
cation does not crash, while Mode 5 uses a shared memory communication to tolerate
application crashs. Mode 5 comes with the same restrictions and allocation assump-
tions as Mode 3. For both modes, the user may specify the --must:fanin Z switch which
controls the ratio of application to extra tool processes. The default value is 16, higher
values may increase MUST’s overhead, while lower values may reduce its overhead. Ex-
perience with MUST’s distributed deadlock detection shows that it scales to an order of
16,384 processes, but can double MUST’s overhead. If MUST’s overhead is too high for
your use-case, you can add the switch --must:nodl to disable the distributed deadlock
detection for Modes 4 and 5.

6 Included Checks

MUST currently provides correctness checks for the following classes of errors:

e Constants and integer values
e Communicator usage
e Datatype usage

e Group usage

14



7 OPTIONAL: MUST INSTALLATION WITH DYNINST

Operation usage

Request usage

Leak checks (MPI resources not freed before calling MPI_Finalize)

e Type mis-matches

Overlapping buffers passed to MPI

Deadlocks resulting from MPI calls

7 Optional: MUST Installation with Dyninst

In order to install MUST with Dyninst support a full Dyninst installation or a separate
installation of the Dyninst Stackwalker API is needed. This usually requires an installa-
tion of libdwarf. Installation instructions for these can be found on the Dyninst websitd'}
We tested the integration of dyninst in versions 7.0.1 and 8.0.1 and stackwalker APT in
versions 2.1 and 8.0.1. For some systems we identified issues for the older version of
dyninst, that are listed in Section We suggest to install libdwarf as a shared library
(--enable-shared during its configure).

As Dyninst’s build support is currently limited to GNU compilers, you should build
your application and the tool with binary compatible compilers. To build dyninst with
compilers other than GNU, make sure to set the variables CC, CXX, GXX, LD and
LINKER for both, the configure and the make step (this is not supported).

After a successful installation of the Stackwalker API it is necessary to configure
MUST to use this installation. Use the following CMake variables:

e -DUSE_CALLPATH=On Enables the feature

¢ -DSTACKWALKER_INSTALL_PREFIX= Should point to the directory
used for Stackwalker API installation (i.e. prefix given to its configure)

e -DCALLPATH STACKWALKER _EXTRA _LIBRARIES= Addi-
tional libaries that are needed, if libdwarf was built statically you will need to
add an absolute filepath to this lib here

Afterwards run make and make install to build and install MUST. When running
MUST no additional steps are needed. However, the stackwalker library will only be
able to extract source file names and line numbers if the application was built with the
debugging flag -g. Otherwise, it will list symbol addresses and library names instead.

Note that MUST expects that the shared libraries for libdwarf (if built as a shared
library) and libelf are in the LD_LIBRARY_PATH.

"http://www.dyninst.org/

15



8 TROUBLESHOOTING

8 Troubleshooting

The following lists currently known problems or issues and potential workarounds.

8.1 Issues with Ld-Preload

In order to use MUST, your application must be linked against the core library of
P*MPI. Per default MUST will add this library at execution time by using the ld-preload
mechanism. If this causes issues you can use the following command to manually link
the P*MPI library:

mpicc source.c -L<PNMPI-INSTALLATION-DIR>/1ib \
-lpnmpi -o application.exe

Important: if you manually link against the MPI library, you must add the P*MPI
library first and the MPI library afterwards.

8.2 Issues with stackwalkerAPI
boost related error while build of MUST with dyninst-8:

error: boost/bar_foo.hpp: File not found

Solution for boost installation outside of /usr:
Edit mustsrc/modules/Callpath/CMakeLists.txt insert around line 21:

include_directories (/<BOOST_INSTALL_PREFIX>/include)
SEGFAULT on execution of mustrun:
rank O (of 4), pid 12345 catched signal nr 11

without any of the WARNINGs listed below. This issue affects almost every installation.

Solution:
Edit src/dyninst/symtabAPI/src/Object-elf.C' around line 2069 and replace:

if (secNumber >= 1 && secNumber <= regions_.size()) {
by
if (secNumber >= 0 && secNumber < regions_.size()) {

. and rebuild / install dyninst

16



9 COPYRIGHT AND CONTACT

SEGFAULT on execution of mustrun:

rank O (of 4), pid 12345 catched signal nr 11

without any of the WARNINGs listed below and after fixing the issue above.

Solution:
Make sure that you use the same compiler family for building dyninst, P*MPI, GTI,
MUST and your application!

mustrun reports missing library:

WARNING: Can’t load module libcallpathModule.so (Error libdwarf.so:
cannot open shared object file: No such file or directory)

Solution:
Add <LIBDWARF-INSTALLATION-DIR>/lib to LD_LIBRARY_PATH (libd-
warf.so should be located there).

9 Copyright and Contact

MUST is distributed under a BSD style license, for details see the file LICENSE.txt in
its package. Also, MUST uses parts of the callpath library from LLNL, its also uses a
BSD style license, which can be found in the file modules/Callpath/LICENSE. Further,
MUST uses parts of LLNL’s adept utils which have a BSD style license too, it is listed
in the respective source files.

Contact must-feedback@fusionforge.zih.tu-dresden.de for bug reports, feedback, and
feature requests.

17



	Introduction
	Installation
	Prerequisites to build and use MUST
	Configuring with CMake
	PnMPI
	GTI
	MUST
	Environmentals

	Usage
	Execution
	Results

	Example
	Execution with MUST
	Output File

	MUST's Operation Modes
	Mode Overview
	Mode Details

	Included Checks
	Optional: MUST Installation with Dyninst
	Troubleshooting
	Issues with Ld-Preload
	Issues with stackwalkerAPI

	Copyright and Contact

