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Hybrid Programming: Motivation

- MPI is sufficiently abstract so it runs perfectly fine on a single node:
- it doesn’t care where processes are located as long as they can communicate
- message passing implemented using shared memory and IPC
- all details hidden by the MPI implementation;
- usually faster than sending messages over the network;

- but…
- … this is far from optimal:
- MPI processes are separate (heavyweight) OS processes
- portable data sharing is hard to achieve
- lots of program control / data structures have to be duplicated (uses memory)
- reusing cached data is practically impossible
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Hybrid Programming: Motivation

- Increasing number of cores per node
- Increasingly complex nodes – many cores, GPUs, Intel® Xeon Phi™, etc.

Network
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Hierarchical mixing of different programming paradigms
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MPI – Threads Interaction

- Most MPI implementation are threaded (e.g., for non-blocking requests) but not thread-safe.

- Four levels of threading support in increasing order:

- All implementations support MPI_THREAD_SINGLE, but some do not support 
MPI_THREAD_MULTIPLE.

Level identifier Description
MPI_THREAD_SINGLE Only one thread may execute
MPI_THREAD_FUNNELED Only the main thread may make 

MPI calls
MPI_THREAD_SERIALIZED Only one thread may make MPI 

calls at a time
MPI_THREAD_MULTIPLE Multiple threads may call MPI at 

once with no restrictions
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Initialization MPI when using Threads

- Initialise MPI with thread support:

- required specifies what thread level support one requires from MPI
- provided is set to the actual thread level support provided
- could be lower or higher than the required level – always check!

- MPI_Init – equivalent to required = MPI_THREAD_SINGLE

- The level of thread support cannot be changed later
- The thread that calls MPI_Init_thread becomes the main thread

MPI_Init_thread (int *argc, char ***argv, int required, int *provided)

MPI_INIT_THREAD (required, provided, ierr)
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Query Functions

- Obtain the provided level of thread support:

- If MPI was initialised by MPI_Init_thread, then provided is set to the same value as the one 
returned by the initialisation call

- If MPI was initialised by MPI_Init, then provided is set to an implementation specific default 
value

- Find out if running in the main thread:

- flag set to true if the current thread is the main thread

MPI_Query_thread (int *provided)

MPI_Is_thread_main (int *flag)
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MPI + OpenMP

- The most common approach to hybrid programming
- Coarse-grained parallelisation with MPI
- Fine-grained loop or task parallelisation with OpenMP

- Different MPI implementations provide varying degree of support for threaded programs
- MPI_THREAD_MULTIPLE often not implemented completely for all transports
- Performance decrease due to locking overhead

- Safest and most portable approach: Call MPI from the main thread only (and outside any 
OpenMP parallel region) → MPI_THREAD_FUNNELED
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Simple: Iterative processing with MPI only

double data[], localData[];

for (int iter = 0; iter < maxIters; iter++) {

   MPI_Scatter(data, count, MPI_DOUBLE,
               localData, count, MPI_DOUBLE,
               0, MPI_COMM_WORLD);

   for (int i = 0; i < count; i++)
      localData[i] = exp(localData[i]);

   MPI_Gather(localData, count, MPI_DOUBLE,
              data, count, MPI_DOUBLE,
              0, MPI_COMM_WORLD);

}



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Safe: MPI called outside any OpenMP parallel region

double data[], localData[];

for (int iter = 0; iter < maxIters; iter++) {

   MPI_Scatter(data, count, MPI_DOUBLE,
               localData, count, MPI_DOUBLE,
               0, MPI_COMM_WORLD);

   #pragma omp parallel for
   for (int i = 0; i < count; i++)
      localData[i] = exp(localData[i]);

   MPI_Gather(localData, count, MPI_DOUBLE,
              data, count, MPI_DOUBLE,
              0, MPI_COMM_WORLD);

}
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Advanced: MPI called by the master OpenMP thread only

double data[], localData[];
#pragma omp parallel
for (int iter = 0; iter < maxIters; iter++) {
   #pragma omp master
   MPI_Scatter(data, count, MPI_DOUBLE,
               localData, count, MPI_DOUBLE,
               0, MPI_COMM_WORLD);
   #pragma omp barrier
   #pragma omp for
   for (int i = 0; i < count; i++)
      localData[i] = exp(localData[i]);
   #pragma omp master
   MPI_Gather(localData, count, MPI_DOUBLE,
              data, count, MPI_DOUBLE,
              0, MPI_COMM_WORLD);
   #pragma omp barrier
}
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Adventurous: MPI called by a single OpenMP thread at a time

MPI_Init_thread(&argc, &argc, MPI_THREAD_SERIALIZED, &provided);

double data[], localData[];
#pragma omp parallel
for (int iter = 0; iter < maxIters; iter++) {
   #pragma omp single
   MPI_Scatter(data, count, MPI_DOUBLE,
               localData, count, MPI_DOUBLE,
               0, MPI_COMM_WORLD);
   #pragma omp for
   for (int i = 0; i < count; i++)
      localData[i] = exp(localData[i]);
   #pragma omp single
   MPI_Gather(localData, count, MPI_DOUBLE,
              data, count, MPI_DOUBLE,
              0, MPI_COMM_WORLD);
}
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Addressing in Hybrid Programs

- MPI was not designed initially with multithreading in mind
- Single rank (end-point) per process per communicator
- Addressing individual threads is tricky (and mostly hacky)
- MPI and OpenMP IDs live in orthogonal spaces
- MPI rank  [0, #procs-1] MPI_Comm_rank()
- OpenMP thread ID  [0, #threads-1] omp_get_thread_num()
- Hybrid rank:thread  [0, #procs-1] × [0, #threads-1]

Field Value source Remark
source rank Sender process rank Automatically copied, no control over it
destination rank user-supplied Only one rank per process
tag user-supplied Free to choose
communicator user-supplied Multiple communicators possible
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Addressing in Hybrid Programs

- Tags as thread IDs
- Each MPI message carries a tag with at least 15 bits of user-supplied data

- Simple idea: use tag value to address individual threads
- (+) straightforward to implement
- (+) very large number of threads per process addressable
- (-) not possible to further differentiate the messages
- (-) no information about the sending thread retained
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Addressing in Hybrid Programs

- Tags as thread IDs
- Each MPI message carries a tag with at least 15 bits of user-supplied data

- Better idea: multiplex destination thread ID with tag value
- e.g., 7 bits for tag value (0..127) and 8 bits for thread ID (0..255)
- (+) still possible to differentiate the messages
- (-) wildcard receives not trivial to implement
- (-) no information about the sending thread retained
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Addressing in Hybrid Programs

- Tags as thread IDs
- Each MPI message carries a tag with at least 15 bits of user-supplied data

- Even better idea: multiplex source and destination thread IDs with tag value
- suitable for MPI implementations that allow more than 15 bits for tag value
- Open MPI and Intel MPI both allow tag values from 0 to 231-1

- (+) still possible to differentiate the messages
- (+) information about the sending thread retained
- (-) wildcard receives not trivial to implement
- (-) not portable to MPI implementations with smaller tag space
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Multiplex source and destination thread IDs with tag value

#define MAKE_TAG (tag,stid,dtid) \
    (((tag) << 16) | ((stid) << 8) | (dtid))

// Send data to drank:dtid with tag mytag

MPI_Send(data, count, MPI_FLOAT, drank,
         MAKE_TAG(mytag, omp_get_thread_num(), dtid),
         MPI_COMM_WORLD);

-----------------------------------------------------------

// Receive data from srank:stid with a specific tag mytag

MPI_Recv(data, count, MPI_FLOAT, srank,
         MAKE_TAG(mytag, stid, omp_get_thread_num()),
         MPI_COMM_WORLD, MPI_STATUS_IGNORE);
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Multiplex source and destination thread IDs with tag value

#define GET_TAG(val) \
    ((val) >> 16)
#define GET_SRC_TID(val) \
    (((val) >> 8) & 0xff)
#define GET_DST_TID(val) \
    ((val) & 0xff)

// Wildcard receive from srank:stid with any tag

MPI_Probe(srank, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (GET_SRC_TID(status.MPI_TAG) == stid &&
    GET_DST_TID(status.MPI_TAG) == omp_get_thread_num())
{
    MPI_Recv(data, count, MPI_FLOAT, srank, status.MPI_TAG,
             MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
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MPI_Probe and multi-threading

- Beware of possible data races:
- messages, matched by MPI_Probe in one thread, can be received by a matching receive in 

another thread, stealing the message from the first one
- Needs very good care on the side of the thread handling

- Problem solved in MPI-3 with MPI_Mprobe and MPI_Mrecv

- MPI_Mprobe removes the matched message from the matching process
- Returns a message handle to reference the matched message in future receives

- MPI_Mprobe (or MPI_Improbe) used to received a message via message handle

MPI_Mprobe (int source, int tag, MPI_Comm comm, MPI_Message *message, 
            MPI_Status *status)

MPI_Mrecv (void* buf, int count, MPI_Datatype datatype,
           MPI_Message *message, MPI_Status *status)
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Use of multiple communicators

comm[0]

comm[1]

comm[2]

comm[3]

rank 0 rank 1 rank 2
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Use of multiple communicators

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
MPI_Comm comm[nthreads], tcomm;

#pragma omp parallel private(tcomm) num_threads(nthreads)
{
   MPI_Comm_dup(MPI_COMM_WORLD, &comm[omp_get_thread_num()]);
   tcomm = comm[omp_get_thread_num()];
--------------------------------------------------------------
   // Sender
   MPI_Send(data, count, MPI_FLOAT, omp_get_thread_num(),
            drank, comms[dtid]);
--------------------------------------------------------------
   // Receiver
   MPI_Recv(data, count, MPI_FLOAT, stid, srank, tcomm,
            &status);
--------------------------------------------------------------
   MPI_Comm_free(&comm[omp_get_thread_num()]);
}
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Summary of Caveats

- Race-condition possible between MPI_Probe and corresponding MPI_Recv
- Use of “Matched Probe and Receive”

- MPI provides no way to address specific threads in a process
- clever use of message tags
- clever use of many communicators

- Thread-safe MPI implementations often perform worse than non-thread-safe
- Additional synchronisation overhead
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