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INNOVATION DURCH KOOPERATION.

Communication Contexts

- Defines context for each communication operation in MPI
- Group of participating peers (process group)
- Error handlers for communication and I/O operations
- Local key/value cache
- Virtual topology information (optional)

- Two types: intra-communicators (single world) and inter-communicators (across worlds)
- Inter-communicators not covered here (→ Dynamic Process Management)

- Two predefined intra-communicators (pre MPI 4.0 and MPI 4.0 World Model):
- MPI_COMM_WORLD

contains all processes launched initially as part of the MPI program
- MPI_COMM_SELF

contains only the current process



INNOVATION DURCH KOOPERATION.

Communicators

- Communicator – process group – ranks
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INNOVATION DURCH KOOPERATION.

Communicator Query Operations

- Obtain the size of the process group of a given communicator:

- Ranks in the group are numbered from 0 to size-1
- Obtain the rank of the calling process in the given communicator:

- Special “null” rank – MPI_PROC_NULL
- Can be source or destination of point-to-point communications
- Corresponding communication call transforms into a no-op and returns immediately

- Used to write symmetric code and handle process boundaries

MPI_Comm_size (MPI_Comm comm, int *size)

MPI_Comm_rank (MPI_Comm comm, int *rank)



INNOVATION DURCH KOOPERATION.

Communicator comparison

MPI in Small Bites

- Comparing handles directly has limited value
- No information about the opaque objects behind the handles

- Result can be:
- MPI_IDENT
- The communicators are identical (i.e., comm1 == comm2)

- MPI_CONGRUENT
- The underlying groups are identical in constituents and rank order, but the context is different

(e.g., after duplication)
- MPI_SIMILAR
- The group members are the same, but in different order

- MPI_UNEQUAL
- Otherwise

MPI_Comm_compare (MPI_Comm comm1, MPI_Comm comm2, int *result)



INNOVATION DURCH KOOPERATION.

Communicator creation

- Duplicate an existing communicator
- MPI_Comm_dup, MPI_Comm_dup_with_info, MPI_Comm_idup

- Create new communicator for a subgroup of a communicator
- MPI_Comm_create, MPI_Comm_create_group

- Split an existing communicator
- MPI_Comm_split, MPI_Comm_split_type



INNOVATION DURCH KOOPERATION.

Creating Communicator Copies

- Duplicate a given communicator:

- New communication context with same ranks and ordering
- Easy isolation of encapsulated communication
- Libraries should never communicate on MPI_COMM_WORLD directly

- Potentially modified info settings are not duplicated
→ MPI_Comm_dup_with_info

- Communicator creation can be costly
- Nonblocking versions available

MPI_Comm_dup (MPI_Comm comm, MPI_Comm *newcomm)



INNOVATION DURCH KOOPERATION.

Destroying Communicators

- Communicators take up memory and other precious resources
- Should be freed once no longer needed

- Marks comm for deletion
- comm is set to MPI_COMM_NULL on return
- The actual communicator object is only deleted once all pending operations are completed

- It is erroneous to free predefined communicators MPI_COMM_WORLD, 
MPI_COMM_SELF or MPI_COMM_NULL

 MPI_Comm_free (MPI_Comm *comm)



INNOVATION DURCH KOOPERATION.

Communicator creation

- Duplicate an existing communicator
- MPI_Comm_dup, MPI_Comm_dup_with_info
- MPI_Comm_idup, MPI_Comm_idup_with_info (since MPI 4.0)

- Create new communicator for a subgroup of a communicator
- MPI_Comm_create, MPI_Comm_create_group

- Split an existing communicator
- MPI_Comm_split, MPI_Comm_split_type



INNOVATION DURCH KOOPERATION.

Communicators

- Communicator – process group – ranks

Communicator                                                               
                                         

Process Group
1

2

7
4

06

5

3



INNOVATION DURCH KOOPERATION.

Groups

MPI in Small Bites

- Ordered set of processes
- Rank is actually a characteristic of the communicator’s underlying group

- MPI processes can be part of different groups
- Multiple communicators can be based on the same group



INNOVATION DURCH KOOPERATION.

Communicator Query Operations

- Obtain the size of a process group:

- ranks in the group are numbered from 0 to size-1

- Obtain the rank of the calling process in the given process group:

MPI_Group_size (MPI_Group group, int *size)

MPI_Group_rank (MPI_Group group, int *rank)



INNOVATION DURCH KOOPERATION.

Group comparison

MPI in Small Bites

- Comparing handles directly has limited value
- No information about the opaque objects behind the handles

- Result can be:
- MPI_IDENT
- The groups are identical (i.e., comm1 == comm2)
- The underlying groups are identical in constituents and rank order

- MPI_SIMILAR
- The group members are the same, but in different order

- MPI_UNEQUAL
- Otherwise

MPI_Group_compare (MPI_Group group1, MPI_Group group2, int *result)



INNOVATION DURCH KOOPERATION.

Identifying ranks across different groups

MPI in Small Bites

- n indicates the length of the two arrays ranks1 and rank2
- ranks1 holds a list of valid ranks in group1
- ranks2 returns the corresponding rank in group2 at the same index
- MPI_UNDEFINED if no correspondence exists

MPI_Group_translate_ranks (MPI_Group group1, int n, const int ranks1[], 
                           MPI_Group group2, int rank2[])



INNOVATION DURCH KOOPERATION.

Group constructors

MPI in Small Bites

- No mechanism to build a group from scratch
- Groups need to be derived from a base group

- Obtain the group of a given communicator

- Obtain the group of predefined communicator MPI_COMM_WORLD and derive from it

MPI_Comm_group (MPI_Comm comm, MPI_Group *group)



INNOVATION DURCH KOOPERATION.

Group constructors – Set operations on group

MPI in Small Bites

- Build unions and or intersections of the process groups

- Remove ranks of a second group from those present in a first group

- Explicitly list ranks to retain in (or remove from) a given group

- Ranges are arrays of triples in the form [first rank, last rank, stride]

MPI_Group_union (MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)
MPI_Group_intersection (MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

MPI_Group_incl (MPI_Group group, int n, const int ranks[], MPI_Group *newgroup)
MPI_Group_excl (MPI_Group group, int n, const int ranks[], MPI_Group *newgroup)
MPI_Group_range_incl (MPI_Group group, int n, const int ranks[][3], MPI_Group *newgroup)
MPI_Group_range_excl (MPI_Group group, int n, const int ranks[][3], MPI_Group *newgroup)

MPI_Group_difference (MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)



INNOVATION DURCH KOOPERATION.

Destroying Groups

- Groups take up memory and other precious resources
- Should be freed once no longer needed

- Marks group for deletion
- group is set to MPI_GROUP_NULL on return
- The actual group object is only deleted once all internal references are released

 MPI_Group_free (MPI_Group *group)



INNOVATION DURCH KOOPERATION.

Communicator creation from groups

- Create new communicator for a subgroup of a communicator

- Collective in comm (for ranks  group: newcomm=MPI_COMM_NULL)

- Collective in group   
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MPI_Comm_create (MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

MPI_Comm_create_group (MPI_Comm comm, MPI_Group group, int tag, 
                       MPI_Comm *newcomm)



INNOVATION DURCH KOOPERATION.

Communicator creation

- Duplicate an existing communicator
- MPI_Comm_dup, MPI_Comm_dup_with_info
- MPI_Comm_idup, MPI_Comm_idup_with_info (since MPI 4.0)

- Create new communicator for a subgroup of a communicator
- MPI_Comm_create, MPI_Comm_create_group

- Split an existing communicator
- MPI_Comm_split, MPI_Comm_split_type



INNOVATION DURCH KOOPERATION.

- Split existing communicators into parts

- Split by some characteristics (e.g., rank % n, rank < n, rank / n)

- Split into shared memory groups
- key controls the rank order within 

newcomm
- Useful for shared memory windows

→ One-sided communication
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Communicator splitting

MPI_Comm_split (MPI_Comm comm, int color, int key, MPI_Info info, MPI_Comm *newcomm)

MPI_Comm_split_type (MPI_Comm comm, int split_type, int key, MPI_Info info,
                     MPI_Comm *newcomm)
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