
MPI in Small Bites THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking Point-to-Point Communication

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Point-to-Point Communication

 The goal is to enable communication between processes that share no memory space

 Explicit message passing requires:

 Send and receive primitives (operations)

 Known addresses of both the sender and the receiver

 Specification of what has to be sent/received

TimeCommunicating

Partner A

TimeCommunicating

Partner B

Receive

explicit agreement

Send

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Sending Data

 Sending a message:

 data: location in memory of the data to be sent

 count: number of elements of type to be sent

 type: handle of the MPI datatype of the buffer content

 dest: rank of the receiver

 tag: additional identification of the message

ranges from 0 to MPI_TAG_UB (implementation dependant, but not less than 32767)

 comm: communication context (communicator handle)

int MPI_Send(void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

C

MPI_Send(data, count, type, dest, tag, comm, ierr) Fortran

To whom?What?

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Receiving Data

 Receiving a message:

 data: location of the receive buffer

 count: size of the receive buffer in data elements

 type: Handle of the MPI datatype of the data elements

 source: rank of the sender or MPI_ANY_SOURCE (wildcard)

 tag: message tag or MPI_ANY_TAG (wildcard)

 comm: communication context

 status: status of the receive operation or MPI_STATUS_IGNORE

int MPI_Recv(void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

C

MPI_Recv(data, count, type, src, tag, comm, status, ierr) Fortran

What? From whom?

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers

 Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

 Whom to send data to / From whom to receive the data?

 How much data?

 What kind of data?

 Has the data arrived?

3. Provide synchronisation mechanisms

 Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

 How do we start multiple processes and get them to work together?

5. Portability









Only local completion

information available.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Message Envelope and Matching

 Message matching is performed using the message envelope

 Send operation

 Receive operation

int MPI_Send (void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

int MPI_Recv (void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Sender Receiver

Source Implicit Explicit, wildcard possible (MPI_ANY_SOURCE)

Destination Explicit Implicit

Tag Explicit Explicit, wildcard possible (MPI_ANY_TAG)

Communicator Explicit Explicit

Message Envelope

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Message Envelope and Matching

 Correct reception of MPI messages is also dependent on the data type.

 Recall:

 Type signatures must match

 May not be verified by MPI library (source for unpredictable errors!)

 One send operation is matched with one receive operation

 Messages do not aggregate (no single receive for multiple sends)

 Messages do not separate (no multiple receives for a single send)

MPI_Send (void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

MPI_Recv (void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Message Size and Status Object

 The receive buffer must be able to fit the entire message

 send count ≤ receive count OK (check effective message length with status)

 send count > receive count ERROR (message truncation)

 Message size inquiry:

 Number of integral elements of type datatype in the message reference by status

 If message size not divisible by size of given datatype size: MPI_UNDEFINED

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Status Object Fields

 The MPI status object contains information about the message

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
…
status(MPI_SOURCE) ! message source rank
status(MPI_TAG) ! message tag
status(MPI_ERROR) ! receive status code

Fortran

MPI_Status status;
…
status.MPI_SOURCE // message source rank
status.MPI_TAG // message tag
status.MPI_ERROR // receive status code

C

TYPE(MPI_Status) :: status
…
status%MPI_SOURCE ! message source rank
status%MPI_TAG ! message tag
status%MPI_ERROR ! receive status code

Fortran 2008

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Checking for Message Availability (no threads)

 Checking for message:

 Do NOT use with multiple communicating threads (alternatives covered in a separate part)

 Message is not received, separate call to MPI_Recv needed

 Message envelope and size stored in status object

 Checks for any message in the given communicator (wildcards)

 Receive must use specific values from status to receive the inquired message

MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

MPI_Status status;

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
… allocate buffer based on message size …
MPI_Recv(buffer, size, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &status);

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Checking for Message Availability (no threads)

 Checking for message:

 Do NOT use with multiple communicating threads (alternatives covered in a separate part)

 Message is not received, separate call to MPI_Recv needed

 Message envelope and size stored in status object

 Checks for any message in the given communicator (wildcards)

 Receive must use specific values from status to receive the inquired message

MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

MPI_Status status;

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
… allocate buffer based on message size …
MPI_Recv(buffer, size, MPI_INT, status.MPI_SOURCE, 0,

MPI_COMM_WORLD, &status);

Use envelope

data from status.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Operation Completion

 MPI operations complete locally once the message buffer is no longer in use by the MPI

library and is thus free for reuse

 Send operations complete:

 once the message is constructed and

 placed completely onto the network or

 buffered completely (by MPI, the OS, the network, …)

 Receive operations complete:

 once the entire message has arrived and has been placed into the buffer

 Blocking MPI procedures only return once the corresponding operation has completed

 MPI_Send and MPI_Recv are blocking

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking send (w/o buffering) and receive calls:

Program

Sender Receiver

Program

M
P

I_
R

e
c
v

M
P

I_
S

e
n
d

Data

must not

be used

Data

must

remain

constant
Intermediate message part

Last message part

First message part

Intermediate message part

Send the envelope and wait

Acknowledge envelope match

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Point-to-Point Send Modes

Call Semantics

Buffered / Asynchronous MPI_Bsend Uses extra (user-provided) buffer space to copy the message

buffer and returns to the user. Message transfer may happen

at a later point using the buffer.

Rendezvous / Synchronous MPI_Ssend Explicitly waits for the receiver to start the receive process

Standard MPI_Send May follow buffered (library-internal buffer) or synchronous

semantics depending on implementation, input, and/or runtime

situation

Ready MPI_Rsend Sender assumes the receive to be posted on remote process

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Point-to-Point Send Modes

Call Semantics

Buffered / Asynchronous MPI_Bsend Uses extra (user-provided) buffer space to copy the message

buffer and returns to the user. Message transfer may happen

at a later point using the buffer.

Rendezvous / Synchronous MPI_Ssend Explicitly waits for the receiver to start the receive process

Standard MPI_Send May follow buffered (library-internal buffer) or synchronous

semantics depending on implementation, input, and/or runtime

situation

Ready MPI_Rsend Sender assumes the receive to be posted on remote process

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlocks

 Both MPI_Send and MPI_Recv calls are blocking:

 Standard send operation has two (implementation specific) modes of operation:

 Buffering the message → Asynchronous completion

 Waiting for the receiver to start receiving → Synchronous completion

 Never rely on any implementation-specific behaviour!

 Deadlock in a common data exchange scenario:

TimeRank 0

TimeRank 1

Send to 1

Receive from 0

Receive from 1

Send to 0

Both ranks wait

for Receive to get

called

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlocks

 Both MPI_Send and MPI_Recv calls are blocking:

 Standard send operation has two (implementation specific) modes of operation:

 Buffering the message → Asynchronous completion

 Waiting for the receiver to start receiving → Synchronous completion

 Never rely on any implementation-specific behaviour!

 Deadlock prevention in a common data exchange scenario:

TimeRank 0

TimeRank 1

Receive from 1

Receive from 0

Send to 1

Send to 0

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Combined Send and Receive

 Sends one message and receives one message (in any order) without deadlocking

(unless unmatched)

 Send and receive buffers must not overlap!

 Using the same memory location, elements count and datatype for both operations

 Often slower than MPI_Sendrecv

MPI_Sendrecv (void *senddata, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvdata, int recvcount,
MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

MPI_Sendrecv_replace (void *data, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

 Order is preserved for point-to-point operations

 in a given communicator

 between any pair of processes

 Probe/receive returns the earliest matching message

 Order is not guaranteed for

 Messages sent within different communicators

 Messages arriving from different senders

 Messages sent from different threads even with identical envelopes (logically concurrent)

Message Ordering

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking Point-to-Point Communication Summary

 Communication primitives for data exchange between two processes

 Blocking communication returns on local completion

 An operation is locally complete when arguments to MPI can be re-used / deallocated

 Message order guaranteed between two processes on the same communicator

 Different send modes exist to tweak communication pattern

 Use ‘standard’ send (MPI_Send) if unsure or unless another mode is explicitly needed

 Use other means than ‘buffered’ mode to avoid deadlock (avoid the extra copy)

 Combined send-receive calls

 Explicit communication patterns (may reduce maintainability and impact performance)

 Non-blocking communication (covered in another part)

