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MPI in Small Bites INNOVATION THROUGH COOPERATION.

Point-to-Point Communication

 The goal is to enable communication between processes that share no memory space

 Explicit message passing requires:

 Send and receive primitives (operations)

 Known addresses of both the sender and the receiver

 Specification of what has to be sent/received

TimeCommunicating 

Partner A

TimeCommunicating 

Partner B

Receive

explicit agreement

Send
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Sending Data

 Sending a message:

 data: location in memory of the data to be sent

 count: number of elements of type to be sent

 type: handle of the MPI datatype of the buffer content

 dest: rank of the receiver

 tag: additional identification of the message

ranges from 0 to MPI_TAG_UB (implementation dependant, but not less than 32767)

 comm: communication context (communicator handle)

int MPI_Send(void *data, int count, MPI_Datatype type, 
int dest, int tag, MPI_Comm comm)

C

MPI_Send(data, count, type, dest, tag, comm, ierr) Fortran

To whom?What?
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Receiving Data

 Receiving a message:

 data: location of the receive buffer

 count: size of the receive buffer in data elements

 type: Handle of the MPI datatype of the data elements

 source: rank of the sender or MPI_ANY_SOURCE (wildcard)

 tag: message tag or MPI_ANY_TAG (wildcard)

 comm: communication context

 status: status of the receive operation or MPI_STATUS_IGNORE

int MPI_Recv(void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

C

MPI_Recv(data, count, type, src, tag, comm, status, ierr) Fortran

What? From whom?
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MPI as an SPMD Environment

1. Provide dynamic identification of all peers

 Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

 Whom to send data to / From whom to receive the data?

 How much data?

 What kind of data?

 Has the data arrived?

3. Provide synchronisation mechanisms

 Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

 How do we start multiple processes and get them to work together?

5. Portability









Only local completion 

information available.
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Message Envelope and Matching

 Message matching is performed using the message envelope

 Send operation

 Receive operation

int MPI_Send (void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

int MPI_Recv (void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Sender Receiver

Source Implicit Explicit, wildcard possible (MPI_ANY_SOURCE)

Destination Explicit Implicit

Tag Explicit Explicit, wildcard possible (MPI_ANY_TAG)

Communicator Explicit Explicit

Message Envelope
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Message Envelope and Matching

 Correct reception of MPI messages is also dependent on the data type.

 Recall:

 Type signatures must match

 May not be verified by MPI library (source for unpredictable errors!)

 One send operation is matched with one receive operation

 Messages do not aggregate (no single receive for multiple sends)

 Messages do not separate (no multiple receives for a single send)

MPI_Send (void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

MPI_Recv (void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)
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Message Size and Status Object

 The receive buffer must be able to fit the entire message

 send count ≤ receive count OK (check effective message length with status)

 send count > receive count ERROR (message truncation)

 Message size inquiry:

 Number of integral elements of type datatype in the message reference by status

 If message size not divisible by size of given datatype size: MPI_UNDEFINED

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count)
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Status Object Fields

 The MPI status object contains information about the message

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
…
status(MPI_SOURCE) ! message source rank
status(MPI_TAG)    ! message tag
status(MPI_ERROR)  ! receive status code

Fortran

MPI_Status status;
…
status.MPI_SOURCE // message source rank
status.MPI_TAG // message tag
status.MPI_ERROR // receive status code

C

TYPE(MPI_Status) :: status
…
status%MPI_SOURCE ! message source rank
status%MPI_TAG ! message tag
status%MPI_ERROR ! receive status code

Fortran 2008
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Checking for Message Availability (no threads)

 Checking for message:

 Do NOT use with multiple communicating threads (alternatives covered in a separate part)

 Message is not received, separate call to MPI_Recv needed

 Message envelope and size stored in status object

 Checks for any message in the given communicator (wildcards)

 Receive must use specific values from status to receive the inquired message

MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

MPI_Status status;

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
… allocate buffer based on message size …
MPI_Recv(buffer, size, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &status);
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Checking for Message Availability (no threads)

 Checking for message:

 Do NOT use with multiple communicating threads (alternatives covered in a separate part)

 Message is not received, separate call to MPI_Recv needed

 Message envelope and size stored in status object

 Checks for any message in the given communicator (wildcards)

 Receive must use specific values from status to receive the inquired message

MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

MPI_Status status;

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
… allocate buffer based on message size …
MPI_Recv(buffer, size, MPI_INT, status.MPI_SOURCE, 0,

MPI_COMM_WORLD, &status);

Use envelope 

data from status.



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Operation Completion

 MPI operations complete locally once the message buffer is no longer in use by the MPI 

library and is thus free for reuse

 Send operations complete:

 once the message is constructed and

 placed completely onto the network or

 buffered completely (by MPI, the OS, the network, …)

 Receive operations complete:

 once the entire message has arrived and has been placed into the buffer

 Blocking MPI procedures only return once the corresponding operation has completed

 MPI_Send and MPI_Recv are blocking
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Blocking send (w/o buffering) and receive calls:

Program
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MPI Point-to-Point Send Modes

Call Semantics

Buffered / Asynchronous MPI_Bsend Uses extra (user-provided) buffer space to copy the message 

buffer and returns to the user. Message transfer may happen 

at a later point using the buffer.

Rendezvous / Synchronous MPI_Ssend Explicitly waits for the receiver to start the receive process

Standard MPI_Send May follow buffered (library-internal buffer) or synchronous 

semantics depending on implementation, input, and/or runtime 

situation

Ready MPI_Rsend Sender assumes the receive to be posted on remote process



MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Point-to-Point Send Modes

Call Semantics

Buffered / Asynchronous MPI_Bsend Uses extra (user-provided) buffer space to copy the message 

buffer and returns to the user. Message transfer may happen 

at a later point using the buffer.

Rendezvous / Synchronous MPI_Ssend Explicitly waits for the receiver to start the receive process

Standard MPI_Send May follow buffered (library-internal buffer) or synchronous 

semantics depending on implementation, input, and/or runtime 

situation
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Deadlocks

 Both MPI_Send and MPI_Recv calls are blocking:

 Standard send operation has two (implementation specific) modes of operation:

 Buffering the message → Asynchronous completion

 Waiting for the receiver to start receiving → Synchronous completion

 Never rely on any implementation-specific behaviour!

 Deadlock in a common data exchange scenario:

TimeRank 0

TimeRank 1

Send to 1

Receive from 0

Receive from 1

Send to 0

Both ranks wait 

for Receive to get 

called



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlocks

 Both MPI_Send and MPI_Recv calls are blocking:

 Standard send operation has two (implementation specific) modes of operation:

 Buffering the message → Asynchronous completion

 Waiting for the receiver to start receiving → Synchronous completion

 Never rely on any implementation-specific behaviour!

 Deadlock prevention in a common data exchange scenario:

TimeRank 0

TimeRank 1

Receive from 1

Receive from 0

Send to 1

Send to 0
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Combined Send and Receive

 Sends one message and receives one message (in any order) without deadlocking 

(unless unmatched)

 Send and receive buffers must not overlap!

 Using the same memory location, elements count and datatype for both operations

 Often slower than MPI_Sendrecv

MPI_Sendrecv (void *senddata, int sendcount, MPI_Datatype sendtype, 
int dest, int sendtag, void *recvdata, int recvcount,
MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

MPI_Sendrecv_replace (void *data, int count, MPI_Datatype datatype, 
int dest, int sendtag, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)
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 Order is preserved for point-to-point operations 

 in a given communicator

 between any pair of processes

 Probe/receive returns the earliest matching message

 Order is not guaranteed for

 Messages sent within different communicators

 Messages arriving from different senders

 Messages sent from different threads even with identical envelopes (logically concurrent)

Message Ordering
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Blocking Point-to-Point Communication Summary

 Communication primitives for data exchange between two processes

 Blocking communication returns on local completion

 An operation is locally complete when arguments to MPI can be re-used / deallocated

 Message order guaranteed between two processes on the same communicator

 Different send modes exist to tweak communication pattern

 Use ‘standard’ send (MPI_Send) if unsure or unless another mode is explicitly needed

 Use other means than ‘buffered’ mode to avoid deadlock (avoid the extra copy)

 Combined send-receive calls

 Explicit communication patterns (may reduce maintainability and impact performance)

 Non-blocking communication (covered in another part)


