
MPI in Small Bites INNOVATION THROUGH COOPERATION.THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

INNOVATION DURCH KOOPERATION.

MPI & Threads – Hybrid Programming

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Hybrid Programming: Motivation

- MPI is sufficiently abstract so it runs perfectly fine on a single node:
- it doesn’t care where processes are located as long as they can communicate
- message passing implemented using shared memory and IPC
- all details hidden by the MPI implementation;
- usually faster than sending messages over the network;

- but…
- … this is far from optimal:
- MPI processes are separate (heavyweight) OS processes
- portable data sharing is hard to achieve
- lots of program control / data structures have to be duplicated (uses memory)
- reusing cached data is practically impossible

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Hybrid Programming: Motivation

- Increasing number of cores per node
- Increasingly complex nodes – many cores, GPUs, Intel® Xeon Phi™, etc.

Network

Network

Typical system in 2005 Typical system in 2021

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Hierarchical mixing of different programming paradigms

MPI

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

OpenCL / CUDA
GPGPU

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

OpenCL / CUDA
GPGPU

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI – Threads Interaction

- Most MPI implementation are threaded (e.g., for non-blocking requests) but not thread-safe.

- Four levels of threading support in increasing order:

- All implementations support MPI_THREAD_SINGLE, but some do not support
MPI_THREAD_MULTIPLE.

Level identifier Description
MPI_THREAD_SINGLE Only one thread may execute
MPI_THREAD_FUNNELED Only the main thread may make

MPI calls
MPI_THREAD_SERIALIZED Only one thread may make MPI

calls at a time
MPI_THREAD_MULTIPLE Multiple threads may call MPI at

once with no restrictions

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Initialization MPI when using Threads

- Initialise MPI with thread support:

- required specifies what thread level support one requires from MPI
- provided is set to the actual thread level support provided
- could be lower or higher than the required level – always check!

- MPI_Init – equivalent to required = MPI_THREAD_SINGLE

- The level of thread support cannot be changed later
- The thread that calls MPI_Init_thread becomes the main thread

MPI_Init_thread (int *argc, char ***argv, int required, int *provided)

MPI_INIT_THREAD (required, provided, ierr)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Query Functions

- Obtain the provided level of thread support:

- If MPI was initialised by MPI_Init_thread, then provided is set to the same value as the one
returned by the initialisation call

- If MPI was initialised by MPI_Init, then provided is set to an implementation specific default
value

- Find out if running in the main thread:

- flag set to true if the current thread is the main thread

MPI_Query_thread (int *provided)

MPI_Is_thread_main (int *flag)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI + OpenMP

- The most common approach to hybrid programming
- Coarse-grained parallelisation with MPI
- Fine-grained loop or task parallelisation with OpenMP

- Different MPI implementations provide varying degree of support for threaded programs
- MPI_THREAD_MULTIPLE often not implemented completely for all transports
- Performance decrease due to locking overhead

- Safest and most portable approach: Call MPI from the main thread only (and outside any
OpenMP parallel region) → MPI_THREAD_FUNNELED

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Simple: Iterative processing with MPI only

double data[], localData[];

for (int iter = 0; iter < maxIters; iter++) {

 MPI_Scatter(data, count, MPI_DOUBLE,
 localData, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);

 for (int i = 0; i < count; i++)
 localData[i] = exp(localData[i]);

 MPI_Gather(localData, count, MPI_DOUBLE,
 data, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);

}

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Safe: MPI called outside any OpenMP parallel region

double data[], localData[];

for (int iter = 0; iter < maxIters; iter++) {

 MPI_Scatter(data, count, MPI_DOUBLE,
 localData, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);

 #pragma omp parallel for
 for (int i = 0; i < count; i++)
 localData[i] = exp(localData[i]);

 MPI_Gather(localData, count, MPI_DOUBLE,
 data, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);

}

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Advanced: MPI called by the master OpenMP thread only

double data[], localData[];
#pragma omp parallel
for (int iter = 0; iter < maxIters; iter++) {
 #pragma omp master
 MPI_Scatter(data, count, MPI_DOUBLE,
 localData, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);
 #pragma omp barrier
 #pragma omp for
 for (int i = 0; i < count; i++)
 localData[i] = exp(localData[i]);
 #pragma omp master
 MPI_Gather(localData, count, MPI_DOUBLE,
 data, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);
 #pragma omp barrier
}

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Adventurous: MPI called by a single OpenMP thread at a time

MPI_Init_thread(&argc, &argc, MPI_THREAD_SERIALIZED, &provided);

double data[], localData[];
#pragma omp parallel
for (int iter = 0; iter < maxIters; iter++) {
 #pragma omp single
 MPI_Scatter(data, count, MPI_DOUBLE,
 localData, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);
 #pragma omp for
 for (int i = 0; i < count; i++)
 localData[i] = exp(localData[i]);
 #pragma omp single
 MPI_Gather(localData, count, MPI_DOUBLE,
 data, count, MPI_DOUBLE,
 0, MPI_COMM_WORLD);
}

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

- MPI was not designed initially with multithreading in mind
- Single rank (end-point) per process per communicator
- Addressing individual threads is tricky (and mostly hacky)
- MPI and OpenMP IDs live in orthogonal spaces
- MPI rank [0, #procs-1] MPI_Comm_rank()
- OpenMP thread ID [0, #threads-1] omp_get_thread_num()
- Hybrid rank:thread [0, #procs-1] × [0, #threads-1]

Field Value source Remark
source rank Sender process rank Automatically copied, no control over it
destination rank user-supplied Only one rank per process
tag user-supplied Free to choose
communicator user-supplied Multiple communicators possible

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

- Tags as thread IDs
- Each MPI message carries a tag with at least 15 bits of user-supplied data

- Simple idea: use tag value to address individual threads
- (+) straightforward to implement
- (+) very large number of threads per process addressable
- (-) not possible to further differentiate the messages
- (-) no information about the sending thread retained

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

- Tags as thread IDs
- Each MPI message carries a tag with at least 15 bits of user-supplied data

- Better idea: multiplex destination thread ID with tag value
- e.g., 7 bits for tag value (0..127) and 8 bits for thread ID (0..255)
- (+) still possible to differentiate the messages
- (-) wildcard receives not trivial to implement
- (-) no information about the sending thread retained

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Addressing in Hybrid Programs

- Tags as thread IDs
- Each MPI message carries a tag with at least 15 bits of user-supplied data

- Even better idea: multiplex source and destination thread IDs with tag value
- suitable for MPI implementations that allow more than 15 bits for tag value
- Open MPI and Intel MPI both allow tag values from 0 to 231-1

- (+) still possible to differentiate the messages
- (+) information about the sending thread retained
- (-) wildcard receives not trivial to implement
- (-) not portable to MPI implementations with smaller tag space

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Multiplex source and destination thread IDs with tag value

#define MAKE_TAG (tag,stid,dtid) \
 (((tag) << 16) | ((stid) << 8) | (dtid))

// Send data to drank:dtid with tag mytag

MPI_Send(data, count, MPI_FLOAT, drank,
 MAKE_TAG(mytag, omp_get_thread_num(), dtid),
 MPI_COMM_WORLD);

// Receive data from srank:stid with a specific tag mytag

MPI_Recv(data, count, MPI_FLOAT, srank,
 MAKE_TAG(mytag, stid, omp_get_thread_num()),
 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Multiplex source and destination thread IDs with tag value

#define GET_TAG(val) \
 ((val) >> 16)
#define GET_SRC_TID(val) \
 (((val) >> 8) & 0xff)
#define GET_DST_TID(val) \
 ((val) & 0xff)

// Wildcard receive from srank:stid with any tag

MPI_Probe(srank, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (GET_SRC_TID(status.MPI_TAG) == stid &&
 GET_DST_TID(status.MPI_TAG) == omp_get_thread_num())
{
 MPI_Recv(data, count, MPI_FLOAT, srank, status.MPI_TAG,
 MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI_Probe and multi-threading

- Beware of possible data races:
- messages, matched by MPI_Probe in one thread, can be received by a matching receive in

another thread, stealing the message from the first one
- Needs very good care on the side of the thread handling

- Problem solved in MPI-3 with MPI_Mprobe and MPI_Mrecv

- MPI_Mprobe removes the matched message from the matching process
- Returns a message handle to reference the matched message in future receives

- MPI_Mprobe (or MPI_Improbe) used to received a message via message handle

MPI_Mprobe (int source, int tag, MPI_Comm comm, MPI_Message *message,
 MPI_Status *status)

MPI_Mrecv (void* buf, int count, MPI_Datatype datatype,
 MPI_Message *message, MPI_Status *status)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Use of multiple communicators

comm[0]

comm[1]

comm[2]

comm[3]

rank 0 rank 1 rank 2

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Use of multiple communicators

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
MPI_Comm comm[nthreads], tcomm;

#pragma omp parallel private(tcomm) num_threads(nthreads)
{
 MPI_Comm_dup(MPI_COMM_WORLD, &comm[omp_get_thread_num()]);
 tcomm = comm[omp_get_thread_num()];
--
 // Sender
 MPI_Send(data, count, MPI_FLOAT, omp_get_thread_num(),
 drank, comms[dtid]);
--
 // Receiver
 MPI_Recv(data, count, MPI_FLOAT, stid, srank, tcomm,
 &status);
--
 MPI_Comm_free(&comm[omp_get_thread_num()]);
}

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Summary of Caveats

- Race-condition possible between MPI_Probe and corresponding MPI_Recv
- Use of “Matched Probe and Receive”

- MPI provides no way to address specific threads in a process
- clever use of message tags
- clever use of many communicators

- Thread-safe MPI implementations often perform worse than non-thread-safe
- Additional synchronisation overhead

	MPI in Small Bites
	MPI & Threads – Hybrid Programming
	Hybrid Programming: Motivation
	Hybrid Programming: Motivation (2)
	Hierarchical mixing of different programming paradigms
	MPI – Threads Interaction
	Initialization MPI when using Threads
	Query Functions
	MPI + OpenMP
	Simple: Iterative processing with MPI only
	Safe: MPI called outside any OpenMP parallel region
	Advanced: MPI called by the master OpenMP thread only
	Adventurous: MPI called by a single OpenMP thread at a time
	Addressing in Hybrid Programs
	Addressing in Hybrid Programs (2)
	Addressing in Hybrid Programs (3)
	Addressing in Hybrid Programs (4)
	Multiplex source and destination thread IDs with tag value
	Multiplex source and destination thread IDs with tag value (2)
	MPI_Probe and multi-threading
	Use of multiple communicators
	Use of multiple communicators (2)
	Summary of Caveats

