
MPI in Small Bites INNOVATION THROUGH COOPERATION.THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites



INNOVATION DURCH KOOPERATION.

Non-blocking Point-to-Point Communication

MPI in Small Bites

HPC.NRW Competence Network



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Non-blocking procedures

 Return before associated operation is complete

 Separate call needed to complete operation

 Track non-blocking operation using a request handle:

 C: MPI_Request

 Fortran: INTEGER

 Fortran 2008: TYPE(MPI_Request)

 Operation progress is implementation dependent

 Within MPI functions (e.g., communication functions or other ‘expensive’ function calls)

 Progress thread

 Hardware support 

 Used to overlap communication and computation and to prevent possible deadlocks



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Non-Blocking Send and Receive

 Non-blocking procedures often have an ‘I’ (capital i) prefix

 Note: not all non-blocking functions have this prefix, but are non-blocking nonetheless

 Initiation of non-blocking send and receive operations:

 request: on success set to the handle of the non-blocking operation

MPI_Irecv (void *data, int count, MPI_Datatype dataType, 
int source, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Isend (void *data, int count, MPI_Datatype dataType, 
int dest, int tag, MPI_Comm comm, MPI_Request *request)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Waiting for Request Completion

 Blocking for completion

 Returning status objects (as a blocking receive would)

 Use MPI_STATUS_IGNORE to omit return of status object

 Waiting for a single request to complete:

 Waiting for any single request out of multiple to complete:

MPI_Wait (MPI_Request *request, MPI_Status *status)

MPI_Waitany (int count, MPI_Request array_of_requests[],
int* index, MPI_Status *status)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Waiting for Multiple Request Completion

 Waiting for a multiple (not necessarily all) requests out of multiple to complete:

 Use MPI_STATUSES_IGNORE to omit return of status objects

 Returns with outcount set to MPI_UNDEFINED on no active requests

 Waiting for all requests out of multiple to complete:

MPI_Waitall (int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

MPI_Waitsome (int incount, MPI_Request array_of_requests[],
int* outcount, int array_of_indices[],
MPI_Status array_of_status[])



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Communication-Computation Overlap

Program

Sender Receiver

Program

M
P

I_
R

e
c
v

M
P

I_
S

e
n
d

Data 

must not 

be used

Data 

must 

remain 

constant Intermediate message part

Last message part

First message part

Intermediate message part



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Communication-Computation Overlap

Program

Sender Receiver

Program

Data 

must not 

be used

Data 

must 

remain 

constant

Intermediate message part

Last message part

First message part

Intermediate message part

MPI_Isend

MPI_Wait

MPI_Irecv

MPI_Wait

Magic



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Communication-Computation Overlay

 Other work can be done in between*:

Program

Sender Receiver

Program

Data 

must not 

be used

Data 

must 

remain 

constant

Intermediate message part

Last message part

First message part

Intermediate message part

MPI_Isend

MPI_Wait

MPI_Irecv

MPI_Wait

work work



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlock Prevention (and Communication-Communication Overlap)

 Non-blocking operations can be used to prevent deadlocks in symmetric code:

 That is how MPI_Sendrecv can be implemented

MPI_Irecv

MPI_Wait

MPI_Irecv

MPI_Wait

MPI_Send MPI_Send



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlock Prevention (and Communication-Communication Overlap)

MPI_Irecv

MPI_Waitall

MPI_Irecv

MPI_Waitall

MPI_Isend MPI_Isend



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Test for Request Completion

 Does NOT block for completion

 Indicates whether completion occurred

 Returning status objects (as a blocking receive would)

 Use MPI_STATUS_IGNORE to omit return of status object

 Test for completion of a single request:

 Test for completion of any single request out of multiple:

MPI_Test (MPI_Request *request, int* flag, MPI_Status *status)

MPI_Testany (int count, MPI_Request array_of_requests[],
int* index, int* flag, MPI_Status *status)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Test for Multiple Request Completion

 Test for completion of multiple (not necessarily all) requests out of multiple:

 Flag is implicit in outcount

 Use MPI_STATUSES_IGNORE to omit return of status objects

 Test for completion of all requests out of multiple:

MPI_Testall (int count, MPI_Request array_of_requests[], int* flag,
MPI_Status array_of_statuses[])

MPI_Testsome (int incount, MPI_Request array_of_requests[],
int* outcount, int array_of_indices[],
MPI_Status array_of_status[])



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Further Remarks on Request Completion

 Test or wait for local completion

 Successful requests are set to MPI_REQUEST_NULL on completion

 If called with a null request (MPI_REQUEST_NULL):

 MPI_Wait returns immediately with an empty status

 MPI_Test sets flag to true and returns an empty status

 Ignored in the presence of other valid requests


