
MPI in Small Bites THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Concepts

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization

- MPI is implemented as a library, not a compiler extension
- Common (non-local) objects need coordinated construction
- Library needs to be initialized explicitly

- Multiple methods exist to initialize MPI
- Classic MPI (pre-MPI 4.0) without threads → MPI_Init
- Classic MPI (pre-MPI 4.0) with threads → MPI_Init_thread
- Covered in another part on hybrid programming

- New MPI (MPI 4.0) with threads → MPI_Session_init
- Covered in another part on the session model

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

- Start-up, initialisation, finalization, and
shutdown – C

#include <mpi.h>

int main(int argc, char **argv)
{
 // … some code …
 MPI_Init(&argc, &argv);

 // … computation & communication …

 MPI_Finalize();
 // … wrap-up …
 return 0;
}

2 Pre-initialisation mode: uncoordinated
• No MPI function calls allowed with few exceptions
• All program instances run exactly the same code

Post-finalisation mode: uncoordinated
• No MPI function calls allowed with few exceptions

6

Inclusion of the MPI header file1

Initialisation of the MPI environment with implicit synchronisation3

Parallel MPI code4

Finalisation of the MPI environment5

5

4

6

3

2

1 C

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

- Start-up, initialisation, finalisation, and
shutdown – Fortran

PROGRAM example
 USE mpi_f08 ! USE mpi

! … some code …
 INTEGER :: ierr
 CALL MPI_Init(ierr)

! … computation & communication …

 CALL MPI_Finalize(ierr)

! … wrap-up …
END

2 Pre-initialisation mode: uncoordinated
• No MPI function calls allowed with few exceptions
• All program instances run exactly the same code

Post-finalisation mode: uncoordinated
• No MPI function calls allowed with few exceptions

6

Using the MPI module1

Initialisation of the MPI environment with implicit synchronisation3

Parallel MPI code4

Finalisation of the MPI environment5

5

4

6

3

2

1 Fortran

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

- Initialization:

- Initializes the MPI library and makes the process member of MPI_COMM_WORLD
- [C] Both arguments must be either NULL or they must point to the arguments of main()
- May not be called more than once for the duration of the program execution
- Error code as return value in [C] and additional parameter in [F]

- Finalization:

- Cleans up the MPI library and prepares the process for termination
- Must be called once before the process terminates
- Having other code after the finalisation call is not recommended

C: ierr = MPI_Init(&argc, &argv);
Fortran: CALL MPI_Init(ierr)

C: ierr = MPI_Finalize();
Fortran: CALL MPI_Finalize(ierr)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

- How many processes are there in total?
- Who am I?

#include <mpi.h>

int main(int argc, char **argv)
{
 // … some code …
 int ierr = MPI_Init(&argc, &argv);
 int numberOfProcs, rank;
 // … more code …
 ierr = MPI_Comm_size(MPI_COMM_WORLD,

&numberOfProcs);
 ierr = MPI_Comm_rank(MPI_COMM_WORLD,

&rank);
 // … computation & communication …
 ierr = MPI_Finalize();
 // … wrap-up …
 return 0;
}

C

2

1

2 Obtains the identity of the calling process within the MPI program
NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives
the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then
numberOfProcs will be set to 4 by the call

MPI in Small Bites INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

- How many processes are there in total?
- Who am I? PROGRAM example

 USE mpi_f08 ! USE mpi
 INTEGER :: rank, numberOfProcs, ierr
! … some code …
 CALL MPI_Init(ierr)
! … other code …
 CALL MPI_Comm_size(MPI_COMM_WORLD,&

numberOfProcs, ierr)
 CALL MPI_Comm_rank(MPI_COMM_WORLD,&

rank, ierr)
! … computation & communication …
 CALL MPI_Finalize(ierr)
! … wrap-up …
END PROGRAM example

Fortran

2

1

2 Obtains the identity of the calling process within the MPI program
NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives
the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then
numberOfProcs will be set to 4 by the call

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Ranks

- The processes in any MPI program are initially indistinguishable
- MPI assigns each process a unique identity (rank) in a communication context

(communicator)

?

?

?
?

??

?

?

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Ranks

- The processes in any MPI program are initially indistinguishable
- MPI assigns each process a unique identity (rank) in a communication context

(communicator)

MPI communicator

1

2

7
4

06

5

3

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Ranks

- The processes in any MPI program are initially indistinguishable (for the user)
- MPI assigns each process a unique identity (rank) in a communication context

(communicator)
- Ranks
- Range from 0 to n-1 (with n processes in the communicator)
- An MPI process can have different ranks in different communicators
- Communicators
- Logical contexts where communication takes place
- Comprises a group of MPI processes with some additional information

- MPI_COMM_WORLD is implicitly available
- Comprises all processes initially started with the MPI program

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers
- Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data
- Whom to send data to / From whom to receive the data?
- How much data?
- What kind of data?
- Has the data arrived?

3. Provide synchronisation mechanisms
- Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes
- How do we start multiple processes and get them to work together?

5. Portability

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Compiling MPI Programs

- MPI is a typical library with C header files, Fortran modules, etc.
- Most MPI vendors provide convenience compiler wrappers (names are not standardized!)

- On the RWTH Aachen Compute Cluster:

$MPICXX$CXX

$MPIFC$FC

$MPICC$CC

mpic++c++

mpif90f90

mpicccc

Specific compilers
called automatically

change depending on
the module loaded.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Example: MPI Compiler Wrappers

- RWTH Aachen Cluster defines additional environment variables to minimize confusion

user@cluster ~> echo $MPICC
mpiicc
user@cluster ~> $MPICC -show
icc -I"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/
2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/include" \
 -L"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/
2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib/release" \
 -L"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/
2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib" -Xlinker --enable-new-dtags \
 -Xlinker -rpath -Xlinker
"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/2021.6.0-
intel-compilers-2022.1.0/mpi/2021.6.0/lib/release" -Xlinker -rpath -Xlinker
"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/2021.6.0-
intel-compilers-2022.1.0/mpi/2021.6.0/lib" -lmpifort -lmpi -ldl -lrt -lpthread

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Example: MPI Compiler Wrappers

- RWTH Aachen Cluster defines additional environment variables to minimize confusion

user@cluster ~> module purge && module load gompi
user@cluster ~> echo $MPICC
mpicc
user@cluster ~> $MPICC -show
gcc -I/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/OpenMPI/
4.1.4-GCC-11.3.0/include
 -L/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/OpenMPI/
4.1.4-GCC-11.3.0/lib -L/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/
software/hwloc/2.7.1-GCCcore-11.3.0/lib
[…]
 -Wl,/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/
libevent/2.1.12-GCCcore-11.3.0/lib -Wl,--enable-new-dtags -lmpi

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Executing MPI Programs

- Most MPI implementations provide a special launcher program:

- Launches nprocs instances of program with command-line arguments arg1, arg2, …

- The standard specifies the mpiexec program, but does not require it:
- IBM BG/Q: runjob --np 1024 …
- SLURM resource manager: srun …
- Used on the RWTH Aachen Cluster (in Batch-Skripts)

mpiexec –n nprocs … program <arg1> <arg2> <arg3> …

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Executing MPI Programs

- The launcher often performs more than simply launching processes:
- Helps MPI processes find each other and establish the world communicator
- Redirects the standard output of all ranks to the terminal
- Redirects the terminal input to the standard input of rank 0
- Forwards received signals (Unix-specific)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers
- Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data
- Whom to send data to / From whom to receive the data?
- How much data?
- What kind of data?
- Has the data arrived?

3. Provide synchronisation mechanisms
- Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes
- How do we start multiple processes and get them to work together?

5. Portability

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Error handling

- Error codes indicate the success of the operation:
- Failure is indicated by error codes other than MPI_SUCCESS

- An MPI error handler is called first before the call returns
- The default error handler for non-I/O calls aborts the entire MPI program!
- Error checking in simple programs is redundant

- Actual MPI error code values are implementation specific
- Use MPI_Error_string to derive human readable information

if (MPI_SUCCESS != MPI_Init(&argc, &argv))
 …

CALL MPI_Init(ierr)
IF (ierr /= MPI_SUCCESS) …

FortranC

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Handles to Opaque Objects

- MPI objects (e.g., communicators) are referenced via handles
- Process-local values
- Cannot be passed from one process to another

- Objects referenced by handles are opaque
- Structure is implementation dependent
- Blackbox for the user

- C (mpi.h)
- typedef’d handle types: MPI_Comm, MPI_Datatype, MPI_File, etc.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Handles to Opaque Objects II

- Fortran (USE mpi)
- All handles are INTEGER values
- Easy to pass the wrong handle type

- Fortran 2008 (USE mpi_f08)
- Wrapped INTEGER values: TYPE(MPI_Comm), TYPE(MPI_File), etc.
- The INTEGER handle is still available: comm%MPI_VAL

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Datatype Handles

- MPI is a library
- Cannot infer datatypes of supplied buffers at runtime
- User needs to provide additional information on buffer type

- MPI datatype handles tell the MPI library how to:
- read binary values from the send buffer
- write binary values into the receive buffer
- correctly apply value alignments
- convert between machine representations in heterogeneous environments

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Datatype Handles II

- MPI datatypes are handles
- Cannot be used to declare variables of a specific language type
- sizeof(MPI_INT) provides the size of a datatype handle NOT the size of an int in C

- Type Signatures
- Sequence of basic datatypes in a buffer
- Basic datatypes correspond to native language datatypes

- Type Maps
- Sequence of basic datatypes AND their location in a buffer

- Type signatures of associated operations have to match; Type map may differ!

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Basic MPI Datatypes

- MPI provides predefined datatypes for each language binding:
MPI data type C data type
MPI_CHAR char
MPI_SHORT short
MPI_INT int
MPI_FLOAT float
MPI_DOUBLE double
MPI_UNSIGNED_INT unsigned int
… …
MPI_BYTE -

8 binary digits
no conversion

used for untyped data

MPI data type Fortran data type
MPI_INTEGER INTEGER
MPI_REAL
MPI_REAL8

REAL
REAL(KIND=8)

MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
… …
MPI_BYTE -

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Local vs. Non-local Procedures

- Non-local procedures may require,
- during its execution,
- some specific, semantically-related MPI procedure
- to be called on another MPI process”

- Local procedure are not non-local

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Operations

- MPI defines several operations, which are
- a sequence of steps
- performed by the MPI library
- to stablish and enable
- data transfer
- and/or synchronization

- Four stages
1. Initialization – Resources (argument lists, buffer address, etc.) are handed to the MPI library
2. Starting – The operation takes over control of the resources (buffer contents)
3. Completion – Return control of the resources (buffer contents)
4. Freeing – Return control of the remaining resources

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking vs. Non-blocking vs. Asynchronous

- Blocking procedures return when the associated operation is complete locally
- Any input argument can be safely reused or deallocated
- Operation may not be completed remotely

- Non-blocking procedures return before associated operation is complete locally
- One or more additional calls are needed to complete operation
- Input arguments may not be written or deallocated until operation is complete

- Synchronous operations complete locally only with specific remote intervention
- Asynchronous operations may complete locally without remote intervention

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Communication Paradigms

Point-to-Point
Communication

Collective
Communication

One-sided
Communication

	MPI in Small Bites
	MPI Concepts
	Library Initialization
	Library Initialization (classic MPI – no threads)
	Library Initialization (classic MPI – no threads) (2)
	Library Initialization (classic MPI – no threads) (3)
	General Structure of an MPI Program
	General Structure of an MPI Program (2)
	Ranks
	Ranks (2)
	Ranks (3)
	MPI as an SPMD Environment
	Compiling MPI Programs
	Slide 15
	Slide 16
	Executing MPI Programs
	Executing MPI Programs (2)
	MPI as an SPMD Environment (2)
	Error handling
	Handles to Opaque Objects
	Handles to Opaque Objects II
	Datatype Handles
	Datatype Handles II
	Basic MPI Datatypes
	Local vs. Non-local Procedures
	MPI Operations
	Blocking vs. Non-blocking vs. Asynchronous
	MPI Communication Paradigms

