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MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization

- MPI is implemented as a library, not a compiler extension
- Common (non-local) objects need coordinated construction
- Library needs to be initialized explicitly

- Multiple methods exist to initialize MPI
- Classic MPI (pre-MPI 4.0) without threads →  MPI_Init
- Classic MPI (pre-MPI 4.0) with threads →  MPI_Init_thread
- Covered in another part on hybrid programming

- New MPI (MPI 4.0) with threads →  MPI_Session_init
- Covered in another part on the session model
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Library Initialization (classic MPI – no threads)

- Start-up, initialisation, finalization, and 
shutdown – C

#include <mpi.h>

int main(int argc, char **argv)
{
  // … some code …
  MPI_Init(&argc, &argv);

  // … computation & communication …

  MPI_Finalize();
  // … wrap-up …
  return 0;
}

2 Pre-initialisation mode: uncoordinated
• No MPI function calls allowed with few exceptions
• All program instances run exactly the same code

Post-finalisation mode: uncoordinated
• No MPI function calls allowed with few exceptions
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Library Initialization (classic MPI – no threads)

- Start-up, initialisation, finalisation, and 
shutdown – Fortran

PROGRAM example
  USE mpi_f08 ! USE mpi

!   … some code …
  INTEGER :: ierr
  CALL MPI_Init(ierr)

!  … computation  & communication …

  CALL MPI_Finalize(ierr)

!  … wrap-up …
END

2 Pre-initialisation mode: uncoordinated
• No MPI function calls allowed with few exceptions
• All program instances run exactly the same code

Post-finalisation mode: uncoordinated
• No MPI function calls allowed with few exceptions
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Library Initialization (classic MPI – no threads)

- Initialization:

- Initializes the MPI library and makes the process member of MPI_COMM_WORLD
- [C] Both arguments must be either NULL or they must point to the arguments of main()
- May not be called more than once for the duration of the program execution
- Error code as return value in [C] and additional parameter in [F]

- Finalization:

- Cleans up the MPI library and prepares the process for termination
- Must be called once before the process terminates
- Having other code after the finalisation call is not recommended

C:       ierr = MPI_Init(&argc, &argv);
Fortran: CALL MPI_Init(ierr)

C:       ierr = MPI_Finalize();
Fortran: CALL MPI_Finalize(ierr)
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General Structure of an MPI Program

- How many processes are there in total?
- Who am I?

#include <mpi.h>

int main(int argc, char **argv)
{
  // … some code …
  int ierr = MPI_Init(&argc, &argv);
  int numberOfProcs, rank;
  // … more code …
  ierr = MPI_Comm_size(MPI_COMM_WORLD,

&numberOfProcs);
  ierr = MPI_Comm_rank(MPI_COMM_WORLD,

&rank);
  // … computation  & communication …
  ierr = MPI_Finalize();
  // … wrap-up …
  return 0;
}

C

2

1

2 Obtains the identity of the calling process within the MPI program
NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives 
the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then 
numberOfProcs will be set to 4 by the call



MPI in Small Bites INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

- How many processes are there in total?
- Who am I? PROGRAM example

  USE mpi_f08 ! USE mpi
  INTEGER :: rank, numberOfProcs, ierr
!  … some code …
  CALL MPI_Init(ierr)
!  … other code …
  CALL MPI_Comm_size(MPI_COMM_WORLD,&

numberOfProcs, ierr)
  CALL MPI_Comm_rank(MPI_COMM_WORLD,&

rank, ierr)
!  … computation  & communication …
  CALL MPI_Finalize(ierr)
!  … wrap-up …
END PROGRAM example

Fortran

2

1

2 Obtains the identity of the calling process within the MPI program
NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives 
the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then 
numberOfProcs will be set to 4 by the call
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Ranks

- The processes in any MPI program are initially indistinguishable
- MPI assigns each process a unique identity (rank) in a communication context 

(communicator)
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Ranks

- The processes in any MPI program are initially indistinguishable
- MPI assigns each process a unique identity (rank) in a communication context 

(communicator)

MPI communicator
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Ranks

- The processes in any MPI program are initially indistinguishable (for the user)
- MPI assigns each process a unique identity (rank) in a communication context 

(communicator)
- Ranks
- Range from 0 to n-1 (with n processes in the communicator)
- An MPI process can have different ranks in different communicators
- Communicators
- Logical contexts where communication takes place
- Comprises a group of MPI processes with some additional information

- MPI_COMM_WORLD is implicitly available
- Comprises all processes initially started with the MPI program



MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers
- Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data
- Whom to send data to / From whom to receive the data?
- How much data?
- What kind of data?
- Has the data arrived?

3. Provide synchronisation mechanisms
- Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes
- How do we start multiple processes and get them to work together?

5. Portability
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Compiling MPI Programs

- MPI is a typical library with C header files, Fortran modules, etc.
- Most MPI vendors provide convenience compiler wrappers (names are not standardized!)

- On the RWTH Aachen Compute Cluster:

$MPICXX$CXX

$MPIFC$FC

$MPICC$CC

mpic++c++

mpif90f90

mpicccc

Specific compilers 
called automatically 

change depending on 
the module loaded.
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Example: MPI Compiler Wrappers

- RWTH Aachen Cluster defines additional environment variables to minimize confusion 

user@cluster ~> echo $MPICC  
mpiicc
user@cluster ~> $MPICC -show 
icc -I"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/
2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/include" \
    -L"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/
2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib/release" \ 
    -L"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/
2021.6.0-intel-compilers-2022.1.0/mpi/2021.6.0/lib" -Xlinker --enable-new-dtags \
    -Xlinker -rpath -Xlinker  
"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/2021.6.0-
intel-compilers-2022.1.0/mpi/2021.6.0/lib/release" -Xlinker -rpath -Xlinker 
"/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/impi/2021.6.0-
intel-compilers-2022.1.0/mpi/2021.6.0/lib" -lmpifort -lmpi -ldl -lrt -lpthread
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Example: MPI Compiler Wrappers

- RWTH Aachen Cluster defines additional environment variables to minimize confusion 

user@cluster ~> module purge && module load gompi
user@cluster ~> echo $MPICC
mpicc
user@cluster ~> $MPICC -show
gcc -I/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/OpenMPI/
4.1.4-GCC-11.3.0/include 
    -L/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/OpenMPI/
4.1.4-GCC-11.3.0/lib -L/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/
software/hwloc/2.7.1-GCCcore-11.3.0/lib 
[…]
    -Wl,/cvmfs/software.hpc.rwth.de/Linux/RH8/x86_64/intel/skylake_avx512/software/
libevent/2.1.12-GCCcore-11.3.0/lib -Wl,--enable-new-dtags -lmpi
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Executing MPI Programs

- Most MPI implementations provide a special launcher program:

- Launches nprocs instances of program with command-line arguments arg1, arg2, …

- The standard specifies the mpiexec program, but does not require it:
- IBM BG/Q: runjob --np 1024 …
- SLURM resource manager: srun …
- Used on the RWTH Aachen Cluster (in Batch-Skripts)

mpiexec –n nprocs … program <arg1> <arg2> <arg3> …



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Executing MPI Programs

- The launcher often performs more than simply launching processes:
- Helps MPI processes find each other and establish the world communicator
- Redirects the standard output of all ranks to the terminal
- Redirects the terminal input to the standard input of rank 0
- Forwards received signals (Unix-specific)
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MPI as an SPMD Environment

1. Provide dynamic identification of all peers
- Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data
- Whom to send data to / From whom to receive the data?
- How much data?
- What kind of data?
- Has the data arrived?

3. Provide synchronisation mechanisms
- Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes
- How do we start multiple processes and get them to work together?

5. Portability
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Error handling

- Error codes indicate the success of the operation:
- Failure is indicated by error codes other than MPI_SUCCESS

- An MPI error handler is called first before the call returns
- The default error handler for non-I/O calls aborts the entire MPI program!
- Error checking in simple programs is redundant

- Actual MPI error code values are implementation specific
- Use MPI_Error_string to derive human readable information

if (MPI_SUCCESS != MPI_Init(&argc, &argv))
 …

CALL MPI_Init(ierr)
IF (ierr /= MPI_SUCCESS) …

FortranC
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Handles to Opaque Objects

- MPI objects (e.g., communicators) are referenced via handles
- Process-local values
- Cannot be passed from one process to another

- Objects referenced by handles are opaque
- Structure is implementation dependent
- Blackbox for the user

- C (mpi.h)
- typedef’d handle types: MPI_Comm, MPI_Datatype, MPI_File, etc.
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Handles to Opaque Objects II

- Fortran (USE mpi)
- All handles are INTEGER values
- Easy to pass the wrong handle type

- Fortran 2008 (USE mpi_f08)
- Wrapped INTEGER values: TYPE(MPI_Comm), TYPE(MPI_File), etc.
- The INTEGER handle is still available: comm%MPI_VAL
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Datatype Handles

- MPI is a library
- Cannot infer datatypes of supplied buffers at runtime
- User needs to provide additional information on buffer type

- MPI datatype handles tell the MPI library how to:
- read binary values from the send buffer
- write binary values into the receive buffer
- correctly apply value alignments
- convert between machine representations in heterogeneous environments
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Datatype Handles II

- MPI datatypes are handles
- Cannot be used to declare variables of a specific language type
- sizeof(MPI_INT) provides the size of a datatype handle NOT the size of an int in C

- Type Signatures
- Sequence of basic datatypes in a buffer
- Basic datatypes correspond to native language datatypes

- Type Maps
- Sequence of basic datatypes AND their location in a buffer

- Type signatures of associated operations have to match; Type map may differ!
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Basic MPI Datatypes

- MPI provides predefined datatypes for each language binding:
MPI data type C data type
MPI_CHAR char
MPI_SHORT short
MPI_INT int
MPI_FLOAT float
MPI_DOUBLE double
MPI_UNSIGNED_INT unsigned int
… …
MPI_BYTE -

8 binary digits
no conversion 

used for untyped data

MPI data type Fortran data type
MPI_INTEGER INTEGER
MPI_REAL
MPI_REAL8

REAL
REAL(KIND=8)

MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
… …
MPI_BYTE -
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Local vs. Non-local Procedures

- Non-local procedures may require,
- during its execution, 
- some specific, semantically-related MPI procedure
- to be called on another MPI process”

- Local procedure are not non-local
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MPI Operations

- MPI defines several operations, which are
- a sequence of steps
- performed by the MPI library
- to stablish and enable
- data transfer
- and/or synchronization

- Four stages
1. Initialization – Resources (argument lists, buffer address, etc.) are handed to the MPI library
2. Starting – The operation takes over control of the resources (buffer contents)
3. Completion – Return control of the resources (buffer contents)
4. Freeing – Return control of the remaining resources
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Blocking vs. Non-blocking vs. Asynchronous

- Blocking procedures return when the associated operation is complete locally
- Any input argument can be safely reused or deallocated
- Operation may not be completed remotely

- Non-blocking procedures return before associated operation is complete locally
- One or more additional calls are needed to complete operation
- Input arguments may not be written or deallocated until operation is complete

- Synchronous operations complete locally only with specific remote intervention
- Asynchronous operations may complete locally without remote intervention
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MPI Communication Paradigms

Point-to-Point
Communication

Collective
Communication

One-sided
Communication
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