
MPI in Small Bites INNOVATION THROUGH COOPERATION.THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

INNOVATION DURCH KOOPERATION.

Communicator and Group Handling

MPI in Small Bites

HPC.NRW Competence Network

INNOVATION DURCH KOOPERATION.

Communication Contexts

- Defines context for each communication operation in MPI
- Group of participating peers (process group)
- Error handlers for communication and I/O operations
- Local key/value cache
- Virtual topology information (optional)

- Two types: intra-communicators (single world) and inter-communicators (across worlds)
- Inter-communicators not covered here (→ Dynamic Process Management)

- Two predefined intra-communicators (pre MPI 4.0 and MPI 4.0 World Model):
- MPI_COMM_WORLD

contains all processes launched initially as part of the MPI program
- MPI_COMM_SELF

contains only the current process

INNOVATION DURCH KOOPERATION.

Communicators

- Communicator – process group – ranks

Communicator

Process Group
1

2

7
4

06

5

3

INNOVATION DURCH KOOPERATION.

Communicator Query Operations

- Obtain the size of the process group of a given communicator:

- Ranks in the group are numbered from 0 to size-1
- Obtain the rank of the calling process in the given communicator:

- Special “null” rank – MPI_PROC_NULL
- Can be source or destination of point-to-point communications
- Corresponding communication call transforms into a no-op and returns immediately

- Used to write symmetric code and handle process boundaries

MPI_Comm_size (MPI_Comm comm, int *size)

MPI_Comm_rank (MPI_Comm comm, int *rank)

INNOVATION DURCH KOOPERATION.

Communicator comparison

MPI in Small Bites

- Comparing handles directly has limited value
- No information about the opaque objects behind the handles

- Result can be:
- MPI_IDENT
- The communicators are identical (i.e., comm1 == comm2)

- MPI_CONGRUENT
- The underlying groups are identical in constituents and rank order, but the context is different

(e.g., after duplication)
- MPI_SIMILAR
- The group members are the same, but in different order

- MPI_UNEQUAL
- Otherwise

MPI_Comm_compare (MPI_Comm comm1, MPI_Comm comm2, int *result)

INNOVATION DURCH KOOPERATION.

Communicator creation

- Duplicate an existing communicator
- MPI_Comm_dup, MPI_Comm_dup_with_info, MPI_Comm_idup

- Create new communicator for a subgroup of a communicator
- MPI_Comm_create, MPI_Comm_create_group

- Split an existing communicator
- MPI_Comm_split, MPI_Comm_split_type

INNOVATION DURCH KOOPERATION.

Creating Communicator Copies

- Duplicate a given communicator:

- New communication context with same ranks and ordering
- Easy isolation of encapsulated communication
- Libraries should never communicate on MPI_COMM_WORLD directly

- Potentially modified info settings are not duplicated
→ MPI_Comm_dup_with_info

- Communicator creation can be costly
- Nonblocking versions available

MPI_Comm_dup (MPI_Comm comm, MPI_Comm *newcomm)

INNOVATION DURCH KOOPERATION.

Destroying Communicators

- Communicators take up memory and other precious resources
- Should be freed once no longer needed

- Marks comm for deletion
- comm is set to MPI_COMM_NULL on return
- The actual communicator object is only deleted once all pending operations are completed

- It is erroneous to free predefined communicators MPI_COMM_WORLD,
MPI_COMM_SELF or MPI_COMM_NULL

 MPI_Comm_free (MPI_Comm *comm)

INNOVATION DURCH KOOPERATION.

Communicator creation

- Duplicate an existing communicator
- MPI_Comm_dup, MPI_Comm_dup_with_info
- MPI_Comm_idup, MPI_Comm_idup_with_info (since MPI 4.0)

- Create new communicator for a subgroup of a communicator
- MPI_Comm_create, MPI_Comm_create_group

- Split an existing communicator
- MPI_Comm_split, MPI_Comm_split_type

INNOVATION DURCH KOOPERATION.

Communicators

- Communicator – process group – ranks

Communicator

Process Group
1

2

7
4

06

5

3

INNOVATION DURCH KOOPERATION.

Groups

MPI in Small Bites

- Ordered set of processes
- Rank is actually a characteristic of the communicator’s underlying group

- MPI processes can be part of different groups
- Multiple communicators can be based on the same group

INNOVATION DURCH KOOPERATION.

Communicator Query Operations

- Obtain the size of a process group:

- ranks in the group are numbered from 0 to size-1

- Obtain the rank of the calling process in the given process group:

MPI_Group_size (MPI_Group group, int *size)

MPI_Group_rank (MPI_Group group, int *rank)

INNOVATION DURCH KOOPERATION.

Group comparison

MPI in Small Bites

- Comparing handles directly has limited value
- No information about the opaque objects behind the handles

- Result can be:
- MPI_IDENT
- The groups are identical (i.e., comm1 == comm2)
- The underlying groups are identical in constituents and rank order

- MPI_SIMILAR
- The group members are the same, but in different order

- MPI_UNEQUAL
- Otherwise

MPI_Group_compare (MPI_Group group1, MPI_Group group2, int *result)

INNOVATION DURCH KOOPERATION.

Identifying ranks across different groups

MPI in Small Bites

- n indicates the length of the two arrays ranks1 and rank2
- ranks1 holds a list of valid ranks in group1
- ranks2 returns the corresponding rank in group2 at the same index
- MPI_UNDEFINED if no correspondence exists

MPI_Group_translate_ranks (MPI_Group group1, int n, const int ranks1[],
 MPI_Group group2, int rank2[])

INNOVATION DURCH KOOPERATION.

Group constructors

MPI in Small Bites

- No mechanism to build a group from scratch
- Groups need to be derived from a base group

- Obtain the group of a given communicator

- Obtain the group of predefined communicator MPI_COMM_WORLD and derive from it

MPI_Comm_group (MPI_Comm comm, MPI_Group *group)

INNOVATION DURCH KOOPERATION.

Group constructors – Set operations on group

MPI in Small Bites

- Build unions and or intersections of the process groups

- Remove ranks of a second group from those present in a first group

- Explicitly list ranks to retain in (or remove from) a given group

- Ranges are arrays of triples in the form [first rank, last rank, stride]

MPI_Group_union (MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)
MPI_Group_intersection (MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

MPI_Group_incl (MPI_Group group, int n, const int ranks[], MPI_Group *newgroup)
MPI_Group_excl (MPI_Group group, int n, const int ranks[], MPI_Group *newgroup)
MPI_Group_range_incl (MPI_Group group, int n, const int ranks[][3], MPI_Group *newgroup)
MPI_Group_range_excl (MPI_Group group, int n, const int ranks[][3], MPI_Group *newgroup)

MPI_Group_difference (MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

INNOVATION DURCH KOOPERATION.

Destroying Groups

- Groups take up memory and other precious resources
- Should be freed once no longer needed

- Marks group for deletion
- group is set to MPI_GROUP_NULL on return
- The actual group object is only deleted once all internal references are released

 MPI_Group_free (MPI_Group *group)

INNOVATION DURCH KOOPERATION.

Communicator creation from groups

- Create new communicator for a subgroup of a communicator

- Collective in comm (for ranks group: newcomm=MPI_COMM_NULL)

- Collective in group
 Communicator Process

Group
6

1
2

7
4

0

5

3

MPI_Comm_create (MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

MPI_Comm_create_group (MPI_Comm comm, MPI_Group group, int tag,
 MPI_Comm *newcomm)

INNOVATION DURCH KOOPERATION.

Communicator creation

- Duplicate an existing communicator
- MPI_Comm_dup, MPI_Comm_dup_with_info
- MPI_Comm_idup, MPI_Comm_idup_with_info (since MPI 4.0)

- Create new communicator for a subgroup of a communicator
- MPI_Comm_create, MPI_Comm_create_group

- Split an existing communicator
- MPI_Comm_split, MPI_Comm_split_type

INNOVATION DURCH KOOPERATION.

- Split existing communicators into parts

- Split by some characteristics (e.g., rank % n, rank < n, rank / n)

- Split into shared memory groups
- key controls the rank order within

newcomm
- Useful for shared memory windows

→ One-sided communication

Communicator
Shared

memory

Shared

memory

Shared
memory

Shared

memory

6

1
2

7

4

0

5

3

Communicator splitting

MPI_Comm_split (MPI_Comm comm, int color, int key, MPI_Info info, MPI_Comm *newcomm)

MPI_Comm_split_type (MPI_Comm comm, int split_type, int key, MPI_Info info,
 MPI_Comm *newcomm)

	MPI in Small Bites
	Communicator and Group Handling
	Communication Contexts
	Communicators
	Communicator Query Operations
	Communicator comparison
	Communicator creation
	Creating Communicator Copies
	Destroying Communicators
	Communicator creation (2)
	Communicators (2)
	Groups
	Communicator Query Operations (2)
	Group comparison
	Identifying ranks across different groups
	Group constructors
	Group constructors – Set operations on group
	Destroying Groups
	Communicator creation from groups
	Communicator creation (3)
	Communicator splitting

