
MPI in Small Bites INNOVATION THROUGH COOPERATION.THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites



INNOVATION DURCH KOOPERATION.

Non-blocking Point-to-Point Communication

MPI in Small Bites

HPC.NRW Competence Network



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Non-blocking procedures

 Return before associated operation is complete

 Separate call needed to complete operation

 Track non-blocking operation using a request handle:

 C: MPI_Request

 Fortran: INTEGER

 Fortran 2008: TYPE(MPI_Request)

 Operation progress is implementation dependent

 Within MPI functions (e.g., communication functions or other ‘expensive’ function calls)

 Progress thread

 Hardware support 

 Used to overlap communication and computation and to prevent possible deadlocks



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Non-Blocking Send and Receive

 Non-blocking procedures often have an ‘I’ (capital i) prefix

 Note: not all non-blocking functions have this prefix, but are non-blocking nonetheless

 Initiation of non-blocking send and receive operations:

 request: on success set to the handle of the non-blocking operation

MPI_Irecv (void *data, int count, MPI_Datatype dataType, 
int source, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Isend (void *data, int count, MPI_Datatype dataType, 
int dest, int tag, MPI_Comm comm, MPI_Request *request)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Waiting for Request Completion

 Blocking for completion

 Returning status objects (as a blocking receive would)

 Use MPI_STATUS_IGNORE to omit return of status object

 Waiting for a single request to complete:

 Waiting for any single request out of multiple to complete:

MPI_Wait (MPI_Request *request, MPI_Status *status)

MPI_Waitany (int count, MPI_Request array_of_requests[],
int* index, MPI_Status *status)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Waiting for Multiple Request Completion

 Waiting for a multiple (not necessarily all) requests out of multiple to complete:

 Use MPI_STATUSES_IGNORE to omit return of status objects

 Returns with outcount set to MPI_UNDEFINED on no active requests

 Waiting for all requests out of multiple to complete:

MPI_Waitall (int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

MPI_Waitsome (int incount, MPI_Request array_of_requests[],
int* outcount, int array_of_indices[],
MPI_Status array_of_status[])



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Communication-Computation Overlap

Program

Sender Receiver

Program

M
P

I_
R

e
c
v

M
P

I_
S

e
n
d

Data 

must not 

be used

Data 

must 

remain 

constant Intermediate message part

Last message part

First message part

Intermediate message part



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Communication-Computation Overlap

Program

Sender Receiver

Program

Data 

must not 

be used

Data 

must 

remain 

constant

Intermediate message part

Last message part

First message part

Intermediate message part

MPI_Isend

MPI_Wait

MPI_Irecv

MPI_Wait

Magic



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Communication-Computation Overlay

 Other work can be done in between*:

Program

Sender Receiver

Program

Data 

must not 

be used

Data 

must 

remain 

constant

Intermediate message part

Last message part

First message part

Intermediate message part

MPI_Isend

MPI_Wait

MPI_Irecv

MPI_Wait

work work



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlock Prevention (and Communication-Communication Overlap)

 Non-blocking operations can be used to prevent deadlocks in symmetric code:

 That is how MPI_Sendrecv can be implemented

MPI_Irecv

MPI_Wait

MPI_Irecv

MPI_Wait

MPI_Send MPI_Send



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlock Prevention (and Communication-Communication Overlap)

MPI_Irecv

MPI_Waitall

MPI_Irecv

MPI_Waitall

MPI_Isend MPI_Isend



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Test for Request Completion

 Does NOT block for completion

 Indicates whether completion occurred

 Returning status objects (as a blocking receive would)

 Use MPI_STATUS_IGNORE to omit return of status object

 Test for completion of a single request:

 Test for completion of any single request out of multiple:

MPI_Test (MPI_Request *request, int* flag, MPI_Status *status)

MPI_Testany (int count, MPI_Request array_of_requests[],
int* index, int* flag, MPI_Status *status)



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Test for Multiple Request Completion

 Test for completion of multiple (not necessarily all) requests out of multiple:

 Flag is implicit in outcount

 Use MPI_STATUSES_IGNORE to omit return of status objects

 Test for completion of all requests out of multiple:

MPI_Testall (int count, MPI_Request array_of_requests[], int* flag,
MPI_Status array_of_statuses[])

MPI_Testsome (int incount, MPI_Request array_of_requests[],
int* outcount, int array_of_indices[],
MPI_Status array_of_status[])



MPI in Small Bites INNOVATION THROUGH COOPERATION.

Further Remarks on Request Completion

 Test or wait for local completion

 Successful requests are set to MPI_REQUEST_NULL on completion

 If called with a null request (MPI_REQUEST_NULL):

 MPI_Wait returns immediately with an empty status

 MPI_Test sets flag to true and returns an empty status

 Ignored in the presence of other valid requests


